76 research outputs found

    Improved beta (local beta >1) and density in electron cyclotron resonance heating on the RT-1 magnetosphere plasma

    Get PDF
    This study reports the recent progress in improved plasma parameters of the RT-1 device. Increased input power and the optimized polarization of electron cyclotron resonance heating (ECRH) with an 8.2 GHz klystron produce a significant increase in electron beta, which is evaluated by an equilibrium analysis of the Grad–Shafranov equation. The peak value of the local electron beta βe is found to exceed 1. In the high-beta and high-density regime, the density limit is observed for H, D and He plasmas. The line-averaged density is close to the cutoff density for 8.2 GHz ECRH. When the filling gas pressure is increased, the density limit still exists even in the low-beta region. This result indicates that the density limit is caused by the cutoff density rather than the beta limit. From the analysis of interferometer data, we found that inward diffusion causes a peaked density profile beyond the cutoff density

    Ion cyclotron resonance heating system in the RT-1 magnetospheric plasma

    Get PDF
    We have developed an ion cyclotron resonance frequency (ICRF) heating system for the Ring Trap 1 (RT-1) magnetospheric device. We excite slow waves from the polar region of the dipole magnetic field. The target helium plasma is produced by electron cyclotron heating. The electrons comprise high-temperature (>10 keV) and low-temperature (<100 eV) components with both typically exhibiting densities of the same order of magnitude. The ICRF heating causes an increase in the ion temperatures and toroidal flow velocities in the core plasma region. We observe appreciable temperature differences between the different ion species (main He+ and impurity C2+), suggesting a strong influence of the charge-exchange loss, which caused the bulk ions to remain relatively cold (~20 eV) compared to the impurity ions (~40 eV). By developing an electro-optical measurement system, we have measured the local wave electric field in the plasma

    Electro-optic probe measurements of electric fields in plasmas

    Get PDF
    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas

    Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex

    Get PDF
    The prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior by representing task relevant information with its working memory. The working memory with sustained neural activity is described as a neural dynamical system composed of multiple attractors, each attractor of which corresponds to an active state of a cell assembly, representing a fragment of information. Recent studies have revealed that the PFC not only represents multiple sets of information but also switches multiple representations and transforms a set of information to another set depending on a given task context. This representational switching between different sets of information is possibly generated endogenously by flexible network dynamics but details of underlying mechanisms are unclear. Here we propose a dynamically reorganizable attractor network model based on certain internal changes in synaptic connectivity, or short-term plasticity. We construct a network model based on a spiking neuron model with dynamical synapses, which can qualitatively reproduce experimentally demonstrated representational switching in the PFC when a monkey was performing a goal-oriented action-planning task. The model holds multiple sets of information that are required for action planning before and after representational switching by reconfiguration of functional cell assemblies. Furthermore, we analyzed population dynamics of this model with a mean field model and show that the changes in cell assemblies' configuration correspond to those in attractor structure that can be viewed as a bifurcation process of the dynamical system. This dynamical reorganization of a neural network could be a key to uncovering the mechanism of flexible information processing in the PFC

    Crystal structure of serine dehydrogenase from Escherichia coli: important role of the C-terminal region for closed-complex formation.

    Get PDF
    Serine dehydrogenase from Escherichia coli is a homotetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) family. This enzyme catalyses the NADP(+)-dependent oxidation of serine to 2-aminomalonate semialdehyde. The enzyme shows a stereospecificity for β-(3S)-hydroxy acid as a substrate; however, no stereospecificity was observed at the α-carbon. The structures of the ligand-free SerDH and SerDH-NADP(+)-phosphate complex were determined at 1.9 and 2.7 Å resolutions, respectively. The overall structure, including the catalytic tetrad of Asn106, Ser134, Tyr147 and Lys151, shows obvious relationships with other members of the SDR family. The structure of the substrate-binding loop and that of the C-terminal region were disordered in the ligand-free enzyme, whereas these structures were clearly defined in the SerDH-NADP(+) complex as a closed form. Interestingly, the C-terminal region was protruded from the main body and it formed an anti-parallel β-sheet with another C-terminal region on the subunit that is diagonally opposite to that in the tetramer. It is revealed that the C-terminal region possesses the important roles in substrate binding through the stabilization of the substrate-binding loop in the closed form complex. The roles of the C-terminal region along with those of the residues involved in substrate recognition were studied by site-directed mutagenesis

    Opto-Current-Clamp Actuation of Cortical Neurons Using a Strategically Designed Channelrhodopsin

    Get PDF
    BACKGROUND: Optogenetic manipulation of a neuronal network enables one to reveal how high-order functions emerge in the central nervous system. One of the Chlamydomonas rhodopsins, channelrhodopsin-1 (ChR1), has several advantages over channelrhodopsin-2 (ChR2) in terms of the photocurrent kinetics. Improved temporal resolution would be expected by the optogenetics using the ChR1 variants with enhanced photocurrents. METHODOLOGY/PRINCIPAL FINDINGS: The photocurrent retardation of ChR1 was overcome by exchanging the sixth helix domain with its counterpart in ChR2 producing Channelrhodopsin-green receiver (ChRGR) with further reform of the molecule. When the ChRGR photocurrent was measured from the expressing HEK293 cells under whole-cell patch clamp, it was preferentially activated by green light and has fast kinetics with minimal desensitization. With its kinetic advantages the use of ChRGR would enable one to inject a current into a neuron by the time course as predicted by the intensity of the shedding light (opto-current clamp). The ChRGR was also expressed in the motor cortical neurons of a mouse using Sindbis pseudovirion vectors. When an oscillatory LED light signal was applied sweeping through frequencies, it robustly evoked action potentials synchronized to the oscillatory light at 5-10 Hz in layer 5 pyramidal cells in the cortical slice. The ChRGR-expressing neurons were also driven in vivo with monitoring local field potentials (LFPs) and the time-frequency energy distribution of the light-evoked response was investigated using wavelet analysis. The oscillatory light enhanced both the in-phase and out-phase responses of LFP at the preferential frequencies of 5-10 Hz. The spread of activity was evidenced by the fact that there were many c-Fos-immunoreactive neurons that were negative for ChRGR in a region of the motor cortex. CONCLUSIONS/SIGNIFICANCE: The opto-current-clamp study suggests that the depolarization of a small number of neurons wakes up the motor cortical network over some critical point to the activated state

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia
    corecore