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Abstract 

  The direct measurements of high-frequency electric fields in a plasma bring about 

significant advances in the physics and engineering of various waves. We have developed 

an electro-optical sensor system based on a Pockels effect. Since the signal is transmitted 

through an optical fiber, the system has high tolerance for electromagnetic noises. To 

demonstrate its applicability to plasma experiments, we report the first result of 

measurement of the ion-cyclotron wave injected to the laboratory magnetosphere device 

RT-1. This study compares the results of experimental field measurements with 

simulation results of electric fields in plasmas.  

 

I. Introduction 

Ion cyclotron range of frequencies (ICRF) wave heating is an attractive ion-heating 

method in fusion plasma ignition. For efficient ion heating, researchers have investigated 

the excitation, propagation, and absorption of radio frequency (RF) waves in plasmas as 

wave physics since early stage [1] in linear, tokamak, helical, and other fusion devices. 

The different magnetic structures of these devices characterize the inherent propagations 

and absorptions of waves. The intensities and phases of RF magnetic fields have been 

extensively detected by magnetic probes; consequently, the dispersion relation of excited 

waves has been elucidated [2, 3]. By measuring the magnetic fields in plasmas, we can 

characterize the excited ion cyclotron waves in plasmas [4].  

We considered that direct measurements of RF electric fields will improve our 

physical understanding of wave propagation and absorption in plasmas, leading to an 

efficient ICRF heating approach for fusion plasma devices. Electro-optic (EO) sensors 

based on the Pockels effect are widely used in communications [5], ion thrusters [6], and 
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electromagnetic compatibility measurements [7]. In the EO sensor system, the sensor 

head is electrically separated from the signal acquisition circuit. Therefore, the EO system 

should minimize the disturbance of the wave fields and reduce the intense mixing with 

environmental noise.  

Section II of the present paper develops the EO sensor system and demonstrates its 

ability to measure electric fields in the magnetosphere plasmas of the Ring Trap 1 (RT-1) 

device, which is used in advanced fusion researches. However, the vacuum vessel of the 

RT-1 device and the experimental room during the discharges are inevitably subjected to 

strong stray fields induced by electron cyclotron (EC) heating and ICRF heating. Under 

these conditions, the EO system that uses an optical transmission is superior to the 

conventional magnetic probe in measuring the wave fields in terms of the high tolerance 

for electromagnetic noises.  

The RT-1 device is based on the dipole field concept and was motivated by spacecraft 

observations in the Jovian magnetosphere [9]. This magnetic structure for plasma 

confinement, first proposed by Hasegawa [10], was built as the RT-1 device at The 

University of Tokyo [11]. Another such device is the Levitated Dipole Experiment (LDX) 

constructed at MIT [12]. To produce a laboratory magnetosphere, RT-1 uses a klystron 

and a magnetron operating at 8.2 GHz and 2.45 GHz respectively, for EC heating and to 

generate a high electron beta plasma (e > 1) [13, 14]. Although RT-1 reports the 

anisotropic state of ions in the high electron beta state [15], the ion beta remains cold. In 

order to achieve a high ion-beta state has been studied by ICRF heating in a 

magnetosphere configuration [16]. The antenna excites a slow wave with left-handed 

polarization (slow L wave) at a frequency of a few MHz. The electromagnetic wave 

propagates along the magnetic field lines from the high to low field sides. This so-called 

magnetic beach heating [1] has been studied in various machines [2, 3, 4, 8, 16, 17]. In 

demonstrations, this ion heating scheme was confirmed to increase the ion temperature.  

The wave physics of ICRF heating in the magnetosphere dipole configuration remains 

unclear. Because conventional linear machines differ in their magnetic field structures, 

the possible propagation of the excited waves is carefully considered to access the 

absorption area. Magnetic field direction and strength, and electron densities and 

temperatures limit the propagation and absorption of waves. Conventionally, 

electromagnetic waves excited in plasmas are characterized by the wave magnetic fields 

detected by magnetic probes. The merits of this method are local measurement, cost 

effectiveness, and high heat endurance. However, the electrostatic components, for 

example, potential oscillations by the antenna voltage, electrostatic waves, and 

unexpected mode converted waves, are not detectable. RF electric fields are evaluated by 
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a finite element method based on cold plasma theory, namely, the TASK/WF2 code [18] 

developed for tokamaks, and by the linear machine Gamma-10 [9]. The TASK/WF2 code 

was applied in the first study of magnetosphere configuration [16]. The present paper is 

restricted to electric field measurements in plasmas by the EO probe. 

Section III presents the RT-1 device and its related accessories. The measured electric 

field profiles in air and plasmas are compared with simulation results. In these tests, the 

antenna excites a MHz wave. The results extend the predictive accuracy of the simulation 

and enhance our understanding of the physical processes. Furthermore, plasmas may be 

affected by phenomena derived from antenna potential oscillations and electrostatic wave 

excitations, which are not detectable by conventional magnetic probes. The results are 

comprehensively discussed in Section IV, and a concluding summary is presented in 

Section V. 

 

 

II. Electro optic probe for electric field measurements  

Two types of electric field probes based on the Pockels effect have been developed; 

the interferometer-type EO-sensor [7] and the bulk-crystal-type EO-sensor [5]. The 

former is equipped with an optical waveguide containing a miniature antenna on LiNiO3 

substrate, and the latter detects the change in polarization angle caused by a change in 

refractive index. This paper employs the EO sensor (CS-1403, Seikoh Giken Co. Ltd, 

Japan). Figure 1 shows a schematic of the EO sensor system and the details of the sensor 

head on the LiNiO3 crystal substrate. The single-mode optical-fiber is spliced onto the 

optical waveguide fabricated on the substrate. The sensor head is enclosed in an acrylic 

resin case of volume (6 × 5.5 × 23.5) mm3 for shock protection. The EO sensor detects 

electric field intensities from 1 V/m to 25 kV/m and frequencies from 100 kHz to 10 GHz. 

The bottom part of Fig. 1 depicts the measurement setup of the electric field. Polarized 

light from a laser source with a wavelength and power of 1.55 m and 16 dBm 

respectively (CoBrite DX1, ID Photonics, Germany) is delivered to the EO sensor 

(denoted Pockels in Fig. 1) via polarization-maintaining optical fibers (PM fibers) and a 

circulator. Single-mode optical fibers (SM fibers) connect the EO sensor to an InGaS PIN 

photo detector (Newport, wavelength 1000–1650 nm, bandwidth 12.5 GHz). The laser 

light is divided into two optical waveguides fabricated into the LiNbO3 crystal substrate. 

This optical waveguide system forms the interferometer that amplitude-modulates the 

optical signal. The laser light passing through one optical waveguide acquires the electric 

field generated by a printed dipole antenna on the LiNbO3. The electric field changes the 

refractive index of the LiNbO3, causing a phase delay of the laser light. The phase of the 
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laser light through the other waveguide is unchanged. Both laser lights are reflected at the 

end mirror of the EO sensor, and are merged into one beam on the LiNbO3. The interfered 

signal passes through the circulator and is measured by the InGaS PIN photo detector. 

The output signal of the photo detector is monitored by a spectrum analyzer (Anritsu, 

MS2720T, bandwidth 9 kHz–20 GHz) with a time resolution of 100 ms. The EO sensor 

head mounted on RT-1 is electrically separated by a 21-m long SM fiber (measured from 

the sensor head). The remaining components are placed at the control room to reduce the 

electromagnetic noises. The EO sensor was directed transversely to the optical fiber axis. 

For electric field measurements in RT-1, the sensor head was encapsulated inside a 

quartz tube of diameter 24 mm, thickness 5 mm, and length 24 mm, as shown in Fig. 2. 

The quartz tube was closely contacted to a stainless steel tube (SUS304) and vacuum-

sealed by a Viton O-ring. The tube interior was filled with air. The optical fiber from the 

EO sensor head was led to the outside of the stainless steel tube. As the operating 

temperature of the EO sensor is limited to below 60°C, we confirmed prior to 

measurement that the temperature inside the quartz tube never exceeded 60°C at the 

experimental plasma discharge.  

Prior to experiments, we also obtained the absolute intensity of the electric fields and 

the radiation pattern. For this purpose, the EO sensor was characterized in the MHz range. 

A known electromagnetic wave from a synthesizer was introduced to the shield box, and 

was radiated by an antenna. The electromagnetic absorbers surrounded the inner wall 

surface. The EO sensor head was placed at the center of the shield box, and the radiation 

pattern was measured at 3 MHz while rotating the sensor head on the optical fiber axis 

(see Fig. 3). The directional sensitivity was approximately one order of magnitude higher 

at 0° and 180° than at 90° and 270°. The radiation pattern acquisition was repeated at 1 

and 2 MHz. The calibration factors fluctuated within a few dB up to 10 GHz.  

   

 

III. Measurement of RF electric fields for ion heating in magnetosphere plasmas 

Figure 4 shows the top and cross-sectional views of RT-1[14]. To create the dipole 

field, the superconducting levitation magnet inside the vacuum vessel is levitated by the 

lifting magnet, which is a normal conductor. The high-temperature superconducting wires 

of the levitation magnet are composed of Bi-2223. The plasma in this experiment was 

produced by EC heating while filling with helium gas. The ICRF heating was 

accomplished by a double-loop antenna mounted on the center stack with supporting rods, 

which are electrically insulated from the vacuum vessel. For magnetic beach heating, the 

ICRF wave fields are excited at the lower and upper loop antennas located at ω/ΩHe2+~ 
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0.58 and ω/ΩH+~ 0.66, respectively, at the interior high-field side. Figure 5 displays the 

current directions through the antenna. One end of the antenna is connected to the current 

feedthrough, which feeds RF power from a RF power supply with a nominal output of 10 

kW in the 1–3 MHz range. Reflections are reduced by a matching box placed between 

the feedthrough and the RF power supply. The other end of the antenna is connected to 

the grounded vessel. 

The EO sensor measures the RF electric fields in RT-1 plasmas. To obtain the vertical 

profile of the electric field in the theta (toroidal) direction, E, we inserted the EO sensor 

(enclosed in its supporting rod) from the top port (#5-T-0) of RT-1 at the radial position 

R = 0.245 m. The EO sensor detected the stray electromagnetic waves radiating from the 

EC and ICRF heating in the RT-1 vacuum vessel. Panels (a) and (b) of Fig. 6 show typical 

spectra of the 3-MHz ICRF wave and the EC wave at the nominal frequency of 2.45 GHz 

during plasma shots. These spectra were acquired by a spectrum analyzer with a time 

resolution of a few hundred milliseconds. The absolute electric field was obtained by 

subtracting the noise floor from the peak, and multiplying the subtracted value by the 

calibration factor.  

To evaluate the EO sensor system, we compared the measured electric fields in air 

and plasma with those calculated by the TASK/WF2 code, which solves Maxwell’s 

equations in the cold plasma limit in cylindrical coordinates (r, z) by a finite-element 

method, assuming toroidal symmetry. The conductor boundaries are the vacuum vessel 

of RT-1, the levitation coil, and the center stack. Quantitative comparisons require the 

antenna current, which is measured by a current transformer placed at the current 

feedthrough close to the antenna. Figure 7 shows the profile of E at 3 MHz measured at 

R = 0.245 m. In this case, the antenna was excited at 3 MHz and 5 A. This signal level is 

sufficient for comparisons among the results. The EO sensor was scanned in the Z 

direction. The EO sensor head contacted the double-loop antenna at Z = 0.22 m. The 

measured E quantitatively agreed with the simulation, and both methods obtained 

reliable results. The signal of the EO probe reached the background level at Z ≥ 0.32 m. 

Figure 8 shows the EO sensor, the double-loop antenna, and the levitation 

superconducting magnet in the vacuum vessel. The EO sensor in the ICRF plasma 

experiments was inserted at R = 0.72 m, further than in the air experiments.  

The power of the EC heating (PECH = 12.2 kW) sustains the plasma discharge for one 

second at the helium gas pressure of 2.1 mPa. At the onset of the discharge, the ICRF 

heating initiates electromagnetic wave excitation by the double-loop antenna. The ion 

heating is accomplished by the beach heating method [1]. The excited slow wave 

propagates parallel to the magnetic field from high to low magnetic-field sides, and is 
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absorbed at the ion cyclotron layer in the lower magnetic fields. With each shot, the EO 

sensor was vertically moved at R = 0.72 m (5-T-2 port in Fig. 4). The temperatures of the 

He+ and C2+ ions were monitored by the Doppler broadening of bulk helium ions (He II, 

λ = 468.57 nm) and impurity ions (C III, λ = 464.74 nm) in the equatorial plane. In the 

discharge, the radial profiles of the He II and C III ion temperatures peaked at Ti ~ 10 eV 

and ~30 eV, respectively. The peaks appeared at R = 0.7 m in the plane Z = 0. The 

interferometers (IFs) #1 and #3 measured the line-averaged electron densities 𝑛̅0 along 

the central chord, where the horizontal line of sight passes through R = 0.45 m, and 𝑛̅edge 

along the peripheral chord, where the vertical line of sight passes through R = 0.6 and 0.7 

m. The discharge conditions in the figures are summarized in Table 1.  

To calculate the wave fields, we inserted the experimental parameters into a 

TASK/WF2 simulation. For reconstructing the electron density profile, we assumed a flux 

surface function of 1/R in the dipole field of RT-1 and evaluated the line averaged 

densities of the interferometers. The TASK/WF2 code calculates the excitation by the 

double-loop antenna, the propagation and the power absorption of waves in plasmas. 

Figure 9 shows the electric field and the ICRF power-absorption profiles simulated in RT-

1. The last closed flux surface (LCFS) is indicated. The power-absorption area of He2+ 

exists on the ion cyclotron layer between the upper and lower antennas. Hence, only the 

slow L wave excited at the lower antenna achieves the ion cyclotron resonance layer for 

He2+; the upper antenna does not contribute to ion heating. Moreover, no He+2 heating 

occurs at an ICRF frequency of 2 MHz. The simulation suggests that during ICRF heating, 

the power absorption of the waves increases at lower frequencies (1–4 MHz) and higher 

electron densities (1015–1019 m−3). These features are consistent with the slow L wave 

propagation from high to low magnetic fields.  

Figure 10 compares the measured and simulated E values as Z is varied. The 

measured E exceeds the simulated E beyond the LCFS at Z = 0.35 m. In contrast, within 

the plasma confinement region, the field strength of the wave decreases and the results 

coincide at Z = 0.3 m. The discrepancy might arise from the antenna potential oscillation, 

which was ignored in the TASK/WF2 simulation. In the experiment, the double-loop 

antenna oscillated at a few kV under an RF power input of 10 kW. This electrostatic 

oscillation might deviate the measured and simulation results beyond the confinement 

region. To suppress spurious wave excitations, a Faraday shield is required for the double-

loop antenna. 

The electron density profile in front of the antenna might also causes the discrepancy 

in wave field strength between the simulated and measured results. To verify the edge 

density profile, we vertically measured the edge electron density nedge at R = 0.72 m, 
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replacing the EO probe with a double probe. The edge electron density was smoothly 

connected to the core plasma across the LCFS at Z = 0.35 m. Therefore, the peaked profile 

of E observed in Fig. 10 cannot be attributed to the edge density profile.  

The RF electric fields along the line R = 0.72 m were measured during ICRF heating 

under different discharge conditions (listed in Table 1). The ICRF heating was conducted 

at 3 MHz. Figure 11 shows the profiles of the RF electric fields in helium plasma at fill 

gas pressures of 2.1 mPa and 4.4 mPa. The input powers for EC and ICRF heating were 

almost identical in the two discharges. From core to edge, the electron density was higher 

at 4.4 mPa than at 2.1 mPa. We surmise that the higher electron density increases the wave 

absorption efficiency, reducing E at the EO sensor position. The peak in the E profile at 

the LCFS remained at the higher electron density. 

The RF electric fields were measured during ICRF heating in helium and in mixed 

hydrogen–helium plasmas. The results are plotted in Fig. 12. To measure the ion 

temperature, we introduced a small amount of helium into the hydrogen plasma. The 

applied frequency was set to 2 MHz. In both cases, the RF electric fields at Z = 0.35 m 

were stronger than at 3 MHz, being measured as 185 V/m in the hydrogen–helium mixture 

and 95 V/m in the helium plasma. The antenna current at 2 MHz was 280–296 A, 1.2 

times higher than at 3 MHz. Therefore, the E was increased by the higher RF input power 

and electron density. Again, the electric fields were peaked at the LCFS. The local 

measurement of RF electric fields clarified an unexpected wave excitation during ICRF 

heating of the magnetosphere plasmas. The EO sensor system is a powerful tool for 

studying wave physics in plasmas. However, the underlying wave physics and the relation 

between the observed electric fields and the ion heating efficiency require further careful 

investigation. 

 

 

IV. Discussion on RF electric fields excited in plasmas 

  The E measured along the Z direction shows a local maximum near the LCFS. The 

peaked profile of the measured E in Fig. 10 cannot be replicated by the TASK/WF2 code. 

We now attempt to interpret the measured E. The signal of the EO probe might cause 

incomplete separation of E from the radial and vertical E components (Er and Ez 

respectively); however, the measured Er and Ez components were one order of magnitude 

lower in sensitivity than E, and were insensitive to the  direction.  

To evaluate the interference effect in the measured E, we calculated the RF electric 

fields by the TASK/WF2 code. The main structures of the levitation magnet and the 

vacuum vessel of RT-1 were entered into the simulation model. The spatial structure was 
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divided into non-structural meshes for the finite element method, and the wave equation 

of the electric field was given by the Maxwell equation in plasma [18] 

∇ × ∇ × 𝑬̃ +
1

𝑐2

𝜕

𝜕𝑡2 𝑬̃ = −𝜇0
𝜕

𝜕𝑡
(𝑱̃ + 𝑱̃𝑒𝑥𝑡), 

where 𝑱̃ is the perturbed current induced by an RF field, and 𝑱̃𝑒𝑥𝑡 is the external current 

density. This solution gives the fields and structures of electromagnetic waves in plasmas. 

The excitation of electromagnetic waves is modeled by feeding 𝑱̃𝑒𝑥𝑡to the antenna.  

The sinusoidal antenna potential associated with charged particle fluctuations induces 

an intense electric field. To simulate this situation, we must modify the TASK/WF2 code. 

The current density 𝑱̃𝑒𝑥𝑡 applied to the antenna and its associated electric charge density 

𝜌𝑒𝑥𝑡 are separated from the plasma-induced terms 𝑱̃ and 𝜌. In matrix form, the resulting 

equation is 

𝐴 ∙ 𝒙 = 𝒃 

     = (
𝑱̃
𝜌

) + (
𝑱̃𝑒𝑥𝑡

𝜌𝑒𝑥𝑡
), 

where the matrix 𝐴 represents the dielectric constant and permeability in the medium, 

and 𝒙  contains the plasma parameters related to densities and temperatures. The  

electric fields in RT-1 were calculated in two separate cases; 𝑱̃𝑒𝑥𝑡 with 𝜌𝑒𝑥𝑡 = 0  that 

does not take into account for the electrostatic potential of the antenna in plasma and 

𝑱̃𝑒𝑥𝑡 = 0 with 𝜌𝑒𝑥𝑡(≠ 0) that does into account for it. We ensured that the result could 

not explain the peaked E observed in RT-1. In a toroidal symmetry we expect that the 

antenna potential cannot excite E. Therefore, in this analysis, we calculated the wave 

fields in TASK/WF2 with 𝑱̃𝑒𝑥𝑡and 𝜌𝑒𝑥𝑡 = 0. 

The two-dimensional profiles of the simulated electric fields in the vacuum vessel of 

RT-1 are plotted in the upper panels of Fig. 13. The corresponding vertical profiles at R = 

0.72 m, where the EO probe was scanned, are presented in the lower panels. The double-

loop antenna radiates an intense E in addition to Er and Ez. Er localizes between the 

levitation coil and the center post, whereas Ez extends with the LCFS. Caging the antenna 

by a Faraday shield would effectively avoid the excitation of the local wave fields Er and 

Ez. Given the directionality of the EO sensor, the interference of Er and Ez is one order of 

magnitude lower than the measured E. Therefore, the peaked E at the LCFS cannot be 

explained by interference phenomena, and requires further consideration and 

experimental investigation. 

 

 

V. Summary 
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Employing the EO sensor system, we successfully measured the RF electric fields and 

analyzed the ICRF heating in laboratory magnetosphere plasmas. RF electric fields 

excited at 2 and 3 MHz were detected in the 3–200 V/m range at some distance from the 

double-loop antenna in the plasmas. The TASK/WF2 code, which is based on cold plasma 

theory, accurately predicted the measured electric fields in air, but could not capture the 

measured E in plasmas, particularly outside the LCFS. Although the antenna-potential 

oscillation associated with the antenna excitation failed to resolve the discrepancy 

between experiment and theory, we suggest that designing the antenna structure and 

installing a Faraday shield would improve the efficiency of ICRF heating. 
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Table 1. Discharge conditions and plasma parameters for generating Figs. 10, 11, and 12. 

Gas 

[mPa] 

PEC 

[kW] 

PICRF 

[kW] 

fICRF 

[MHz] 

Iant 

[A] 

IF#1 

[m−3] 

IF#2 

[m−3] 

IF#3 

[m−3] 

Remarks 

He, 2.1 12.2 6.8 3 252 1.6×1017 3.0×1016 1.0×1016 Red circles in Figs. 10 

and 11 

He, 4.4 12.4 7.0 3 250 3.9×1017 7.3×1016 1.5×1016 Blue circles in Fig. 11 

He, 4.6 13 9.2 2 296 3.1×1017 5.2×1016 2.4×1016 Blue circles in Fig. 12 

H 8.0 

He0.6 

13 10 2 280 1.8×1017 4.2×1016 1.8×1016 Red circles in Fig. 12 
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Figure captions 

 

 

Fig. 1 Measurement setup of electric field with the EO sensor. Upper left shows the 

internal structure of the EO sensor tip. Upper right is a photograph of the EO sensor. The 

acrylic resin case, which normally protects the tip from shock, has been dismounted for 

the photograph.  

 

Fig. 2 Schematic of the EO sensor mounted in a shaft for inserting into RT-1 plasmas. To 

measure the spatial profile, the shaft is mounted on a motor drive system at the flange. 

 

Fig. 3 Radiation pattern of the EO sensor acquired at 3 MHz. 

 

Fig. 4 Magnetosphere plasma device RT-1. (a) Top view and (b) cross sectional view. For 

the electric field measurements, the EO sensor head was inserted from the 5-T-0 (R = 

0.245 m) and 5-T-2 (R = 0.72 m) ports. The double-loop antenna for ICRF heating is 

mounted on the center stack. 

 

Fig. 5 Double-loop antenna and RF current flow for ICRF heating in RT-1.  

 

Fig. 6 Typical spectra in the (a) MHz and (b) GHz ranges during EC heating discharge.  

 

Fig. 7 Electric field profile of E at 3 MHz measured by the EO sensor (closed circles) in 

RT-1 in the air experiments. The simulation result (blue curve) is also plotted. 

 

Fig. 8 The EO sensor mounted inside the supporting rod is inserted from the top port. The 

vacuum vessel of RT-1 contains the levitation superconducting magnet and the double-

loop antenna for ICRF heating.  

 

Fig. 9 Contours of the electric field E excited by the double-loop antenna in helium 

plasma. L-magnet indicates the levitation magnet. The antennas locate outside the LCFS. 

The contours of the power absorption area for He2+ are also plotted. The ion cyclotron 

layers for H+, He2+, and He+ are depicted. 
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Fig. 10 E (closed circles) vertically measured by the EO sensor along R = 0.72 m in 

helium plasma. The ICRF power is 7 kW. The separatrix (dashed line) locates at (R, Z) = 

(0.72 m, 0.35 m). The input parameter for the simulation was the measured antenna 

current (252 A). 

 

Fig. 11 Electric fields E measured by the EO sensor in helium plasmas. The helium gas 

pressures were 2.1 mPa (closed circles) and 4.4 mPa (open circles).  

 

Fig. 12 Electric fields E measured by the EO sensor in plasmas. The fill gas pressures 

are mixed hydrogen at 8.0 mPa and helium at 0.6 mPa (closed circles), and helium at 4.6 

mPa (open circles).  

 

Fig. 13 Two-dimensional profiles of the electric fields excited by the double-loop antenna 

in RT-1. The current densities in the upper and lower loops are set to 𝐽𝑒𝑥𝑡 = +252 A and 

-252A, respectively. Bottom panels show the profiles of Er, Ez, and E along the line R = 

0.72 m in RT-1, plotted from the corresponding 2D profiles.  

 

 


