15 research outputs found
Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization.
International audienceUsing large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex
Mécanismes neurocognitifs de la perception visuelle de scènes chez le jeune adulte et leur évolution au cours du vieillissement normal et pathologique
As suggested by evidence from visual neurophysiology, scene perception could begin by the extraction of different spatial frequencies following a “coarse-to-fine” analysis. The rapid analysis of coarse information in low spatial frequencies (LSF) would provide a global overview of the scene which would then be refined by later analysis of fine information in high spatial frequencies (HSF). The aim of this thesis is to specify the neuro-functional and cognitive mechanisms of spatial frequency and natural scene processing as well as their evolution during normal and pathological aging. In a first fMRI study (Experiment 1), we showed the coexistence of retinotopic and hemispheric processing for spatial frequencies in occipital cortex. In addition, we showed that scene selective regions in the parahippocampal gyrus and retrosplenial cortex were also involved in the processing of spatial frequencies. Therefore, in the following fMRI studies (Experiments 2, 3 and 4), we were particularly interested in spatial frequency processing and "coarse-to-fine" analysis in these selective regions. In the second part of this work, we showed that the “coarse-to-fine” strategy observed in healthy young adults becomes flexible with increasing age (Experiment 5). To clarify the retina-cortex interactions, we studied the categorization performance of patients with age-related macular degeneration. This pathology is characterized by lesions of the central retina, which is thought to be the origin of the visual pathway conveying HSF. We have demonstrated a behavioral deficit (Experiments 6 and 7) of HSF processing linked to hypoactivity of occipital cortex in these patients (Experiment 8). These works clarify the mechanisms involved in scene perception.De nombreux arguments, issus notamment de la neurophysiologie visuelle, suggèrent que la perception visuelle d'une scène débute par une extraction des différentes fréquences spatiales en suivant une stratégie d'analyse « coarse-to-fine ». L'analyse rapide de l'information grossière en basses fréquences spatiales (BFS) fournirait un aperçu global de la de la scène qui serait, ensuite, affinée par l'analyse plus tardive de l'information fine en hautes fréquences spatiales (HFS). L'objectif de cette thèse est de spécifier les mécanismes neuro-fonctionnels et cognitifs du traitement des fréquences spatiales et des scènes naturelles et leur évolution au cours du vieillissement normal et pathologique. Dans une première étude en IRMf (Expérience 1), nous avons montré la coexistence, au niveau du cortex occipital, d'un traitement rétinotopique et hémisphérique des fréquences spatiales. Par ailleurs, nous avons montré que des régions sélectives aux scènes, au sein du gyrus parahippocampique et du cortex retrosplenial, étaient également impliquées dans le traitement des fréquences spatiales. Dans les études IRMf suivantes (Expériences 2, 3 et 4), nous nous sommes particulièrement intéressés au traitement des fréquences spatiales et à la stratégie d'analyse « coarseto- fine » dans ces régions sélectives. Dans la seconde partie de ces travaux, nous avons montré que la stratégie de catégorisation « coarse-to-fine » observée chez le jeune adulte sain, devenait flexible avec l'âge (Expérience 5). Afin de préciser les interactions rétino-corticales, nous avons étudié les performances de catégorisation de patients atteints de dégénérescence maculaire liée à l'âge, pathologie caractérisée par des lésions de la rétine centrale supposée à l'origine de la voie de traitement des HFS. Nous avons démontré un déficit comportemental (Expériences 6 et 7) du traitement des HFS, associé à une hypoactivité du cortex occipital chez ces patients (Expérience 8). Ces travaux permettent de préciser les mécanismes impliqués dans la perception de scènes
Neurocognitive mechanisms of visual perception of natural scenes in young adults and their evolution during normal and pathological aging
De nombreux arguments, issus notamment de la neurophysiologie visuelle, suggèrent que la perception visuelle d'une scène débute par une extraction des différentes fréquences spatiales en suivant une stratégie d'analyse « coarse-to-fine ». L'analyse rapide de l'information grossière en basses fréquences spatiales (BFS) fournirait un aperçu global de la de la scène qui serait, ensuite, affinée par l'analyse plus tardive de l'information fine en hautes fréquences spatiales (HFS). L'objectif de cette thèse est de spécifier les mécanismes neuro-fonctionnels et cognitifs du traitement des fréquences spatiales et des scènes naturelles et leur évolution au cours du vieillissement normal et pathologique. Dans une première étude en IRMf (Expérience 1), nous avons montré la coexistence, au niveau du cortex occipital, d'un traitement rétinotopique et hémisphérique des fréquences spatiales. Par ailleurs, nous avons montré que des régions sélectives aux scènes, au sein du gyrus parahippocampique et du cortex retrosplenial, étaient également impliquées dans le traitement des fréquences spatiales. Dans les études IRMf suivantes (Expériences 2, 3 et 4), nous nous sommes particulièrement intéressés au traitement des fréquences spatiales et à la stratégie d'analyse « coarseto- fine » dans ces régions sélectives. Dans la seconde partie de ces travaux, nous avons montré que la stratégie de catégorisation « coarse-to-fine » observée chez le jeune adulte sain, devenait flexible avec l'âge (Expérience 5). Afin de préciser les interactions rétino-corticales, nous avons étudié les performances de catégorisation de patients atteints de dégénérescence maculaire liée à l'âge, pathologie caractérisée par des lésions de la rétine centrale supposée à l'origine de la voie de traitement des HFS. Nous avons démontré un déficit comportemental (Expériences 6 et 7) du traitement des HFS, associé à une hypoactivité du cortex occipital chez ces patients (Expérience 8). Ces travaux permettent de préciser les mécanismes impliqués dans la perception de scènes.As suggested by evidence from visual neurophysiology, scene perception could begin by the extraction of different spatial frequencies following a “coarse-to-fine” analysis. The rapid analysis of coarse information in low spatial frequencies (LSF) would provide a global overview of the scene which would then be refined by later analysis of fine information in high spatial frequencies (HSF). The aim of this thesis is to specify the neuro-functional and cognitive mechanisms of spatial frequency and natural scene processing as well as their evolution during normal and pathological aging. In a first fMRI study (Experiment 1), we showed the coexistence of retinotopic and hemispheric processing for spatial frequencies in occipital cortex. In addition, we showed that scene selective regions in the parahippocampal gyrus and retrosplenial cortex were also involved in the processing of spatial frequencies. Therefore, in the following fMRI studies (Experiments 2, 3 and 4), we were particularly interested in spatial frequency processing and "coarse-to-fine" analysis in these selective regions. In the second part of this work, we showed that the “coarse-to-fine” strategy observed in healthy young adults becomes flexible with increasing age (Experiment 5). To clarify the retina-cortex interactions, we studied the categorization performance of patients with age-related macular degeneration. This pathology is characterized by lesions of the central retina, which is thought to be the origin of the visual pathway conveying HSF. We have demonstrated a behavioral deficit (Experiments 6 and 7) of HSF processing linked to hypoactivity of occipital cortex in these patients (Experiment 8). These works clarify the mechanisms involved in scene perception
Mécanismes neurocognitifs de la perception visuelle de scènes chez le jeune adulte et leur évolution au cours du vieillissement normal et pathologique
De nombreux arguments, issus notamment de la neurophysiologie visuelle, suggèrent que la perception visuelle d'une scène débute par une extraction des différentes fréquences spatiales en suivant une stratégie d'analyse coarse-to-fine . L'analyse rapide de l'information grossière en basses fréquences spatiales (BFS) fournirait un aperçu global de la de la scène qui serait, ensuite, affinée par l'analyse plus tardive de l'information fine en hautes fréquences spatiales (HFS). L'objectif de cette thèse est de spécifier les mécanismes neuro-fonctionnels et cognitifs du traitement des fréquences spatiales et des scènes naturelles et leur évolution au cours du vieillissement normal et pathologique. Dans une première étude en IRMf (Expérience 1), nous avons montré la coexistence, au niveau du cortex occipital, d'un traitement rétinotopique et hémisphérique des fréquences spatiales. Par ailleurs, nous avons montré que des régions sélectives aux scènes, au sein du gyrus parahippocampique et du cortex retrosplenial, étaient également impliquées dans le traitement des fréquences spatiales. Dans les études IRMf suivantes (Expériences 2, 3 et 4), nous nous sommes particulièrement intéressés au traitement des fréquences spatiales et à la stratégie d'analyse coarseto- fine dans ces régions sélectives. Dans la seconde partie de ces travaux, nous avons montré que la stratégie de catégorisation coarse-to-fine observée chez le jeune adulte sain, devenait flexible avec l'âge (Expérience 5). Afin de préciser les interactions rétino-corticales, nous avons étudié les performances de catégorisation de patients atteints de dégénérescence maculaire liée à l'âge, pathologie caractérisée par des lésions de la rétine centrale supposée à l'origine de la voie de traitement des HFS. Nous avons démontré un déficit comportemental (Expériences 6 et 7) du traitement des HFS, associé à une hypoactivité du cortex occipital chez ces patients (Expérience 8). Ces travaux permettent de préciser les mécanismes impliqués dans la perception de scènes.As suggested by evidence from visual neurophysiology, scene perception could begin by the extraction of different spatial frequencies following a coarse-to-fine analysis. The rapid analysis of coarse information in low spatial frequencies (LSF) would provide a global overview of the scene which would then be refined by later analysis of fine information in high spatial frequencies (HSF). The aim of this thesis is to specify the neuro-functional and cognitive mechanisms of spatial frequency and natural scene processing as well as their evolution during normal and pathological aging. In a first fMRI study (Experiment 1), we showed the coexistence of retinotopic and hemispheric processing for spatial frequencies in occipital cortex. In addition, we showed that scene selective regions in the parahippocampal gyrus and retrosplenial cortex were also involved in the processing of spatial frequencies. Therefore, in the following fMRI studies (Experiments 2, 3 and 4), we were particularly interested in spatial frequency processing and "coarse-to-fine" analysis in these selective regions. In the second part of this work, we showed that the coarse-to-fine strategy observed in healthy young adults becomes flexible with increasing age (Experiment 5). To clarify the retina-cortex interactions, we studied the categorization performance of patients with age-related macular degeneration. This pathology is characterized by lesions of the central retina, which is thought to be the origin of the visual pathway conveying HSF. We have demonstrated a behavioral deficit (Experiments 6 and 7) of HSF processing linked to hypoactivity of occipital cortex in these patients (Experiment 8). These works clarify the mechanisms involved in scene perception.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Is Coarse-to-Fine Strategy Sensitive to Normal Aging?
Theories on visual perception agree that visual recognition begins with global analysis and ends with detailed analysis. Different results from neurophysiological, computational, and behavioral studies all indicate that the totality of visual information is not immediately conveyed, but that information analysis follows a predominantly coarse-to-fine processing sequence (low spatial frequencies are extracted first, followed by high spatial frequencies). We tested whether such processing continues to occur in normally aging subjects. Young and aged participants performed a categorization task (indoor vs. outdoor scenes), using dynamic natural scene stimuli, in which they resorted to either a coarse-to-fine (CtF) sequence or a reverse fine-to-coarse sequence (FtC). The results show that young participants categorized CtF sequences more quickly than FtC sequences. However, sequence processing interacts with semantic category only for aged participants. The present data support the notion that CtF categorization is effective even in aged participants, but is constrained by the spatial features of the scenes, thus highlighting new perspectives in visual models
Coarse-to-fine categorization of visual scenes in scene-selective cortex
International audienceNeurophysiological, behavioral, and computational data indicate that visual analysis may start with the parallel extraction of different elementary attributes at different spatial frequencies and follows a predominantly coarse-to-fine (CtF) processing sequence (low spatial frequencies [LSF] are extracted first, followed by high spatial frequencies [HSF]). Evidence for CtF processing within scene-selective cortical regions is, however, still lacking. In the present fMRI study, we tested whether such processing occurs in three scene-selective cortical regions: the parahippocampal place area (PPA), the retrosplenial cortex, and the occipital place area. Fourteen participants were subjected to functional scans during which they performed a categorization task of indoor versus outdoor scenes using dynamic scene stimuli. Dynamic scenes were composed of six filtered images of the same scene, from LSF to HSF or from HSF to LSF, allowing us to mimic a CtF or the reverse fine-to-coarse (FtC) sequence. Results showed that only the PPA was more activated for CtF than FtC sequences. Equivalent activations were observed for both sequences in the retrosplenial cortex and occipital place area. This study suggests for the first time that CtF sequence processing constitutes the predominant strategy for scene categorization in the PPA
Example of six spatial frequency filtered images of scenes belonging to different categories (indoors and outdoors) that depict the coarse-to-fine and fine-to-coarse movies.
<p>Mean amplitude spectra of each categories. On each amplitude spectrum, the low spatial frequencies are close to the center, while the high spatial frequencies are in the periphery. The vertical orientations are represented on the x-axis while the horizontal orientations are represented on the y-axis.</p
Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization
International audienceAge-related macular degeneration (AMD) is characterized by a central vision loss. We explored the relationship between the retinal lesions in AMD patients and the processing of spatial frequencies in natural scene categorization. Since the lesion on the retina is central, we expected preservation of low spatial frequency (LSF) processing and the impairment of high spatial frequency (HSF) processing. We conducted two experiments that differed in the set of scene stimuli used and their exposure duration. Twelve AMD patients and 12 healthy age-matched participants in Experiment 1 and 10 different AMD patients and 10 healthy age-matched participants in Experiment 2 performed categorization tasks of natural scenes (Indoors vs. Outdoors) filtered in LSF and HSF. Experiment 1 revealed that AMD patients made more no-responses to categorize HSF than LSF scenes, irrespective of the scene category. In addition, AMD patients had longer reaction times to categorize HSF than LSF scenes only for indoors. Healthy participants' performance was not differentially affected by spatial frequency content of the scenes. In Experiment 2, AMD patients demonstrated the same pattern of errors as in Experiment 1. Furthermore, AMD patients had longer reaction times to categorize HSF than LSF scenes, irrespective of the scene category. Again, spatial frequency processing was equivalent for healthy participants. The present findings point to a specific deficit in the processing of HSF information contained in photographs of natural scenes in AMD patients. The processing of LSF information is relatively preserved. Moreover, the fact that the deficit is more important when categorizing HSF indoors, may lead to new perspectives for rehabilitation procedures in AMD