323 research outputs found

    Considerations on radar localization in multi-target environments

    Get PDF
    In a multitude of applications like e.g. in automotive radar systems a localization of multiple passive targets in the observed area is necessary. This contribution presents a robust approach based on trilateration to detect point scatterers in a two-dimensional plane using the reflection and transmission information of only two antennas. The proposed algorithm can identify and remove ambiguities in target detection which unavoidably occur in certain target constellations in such a two-antenna configuration

    Compact mode-matched excitation structures for radar distance measurements in overmoded circular waveguides

    Get PDF
    This contribution deals with guided radar level measurements of liquid materials in large metal tubes, socalled stilling wells, bypass or still pipes. In the RF domain these tubes function as overmoded circular waveguides and mode-matched excitation structures like waveguide tapers are needed to avoid higher order waveguide modes. Especially for high-precision radar measurements the multimode propagation effects need to be minimized to achieve submillimeter accuracy. Therefore, a still pipe simulator is introduced with the purpose to fundamentally analyze the modal effects. Furthermore, a generalized design criterion is derived for the spurious mode suppression of compact circular waveguide transitions under the constraint of specified accuracy levels. According to the obtained results, a promising waveguide taper concept will finally be presented. © Author(s) 2008

    The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats

    Get PDF
    The ATP-sensitive K+ (KATP) channel is a class of inward rectifier K+ channels that can link cellular metabolic status to vasomotor tone across the metabolic transients seen with exercise. This investigation tested the hypothesis that if KATP channels are crucial to exercise hyperaemia then blockade via glibenclamide (GLI) would lower hindlimb skeletal muscle blood flow (BF) and vascular conductance (VC) during treadmill exercise. In 14 adult male Sprague Dawley rats mean arterial pressure (MAP), blood [lactate], and hindlimb muscle BF (radiolabelled microspheres) were determined at rest (n = 6) or during exercise (n = 8; 20 m min⁻¹, 5% incline) under control (CON) and GLI conditions (5 mg kg⁻¹, i.a). At rest and during exercise, MAP was higher (Rest, CON: 130 ± 6, GLI: 152 ± 8; Exercise, CON: 140 ± 4, GLI: 147 ± 4 mmHg, P < 0.05) and heart rate (HR) was lower (Rest, CON: 440 ± 16, GLI: 410 ± 18; Exercise, CON: 560 ± 4, GLI: 540 ± 10 beats min⁻¹, P < 0.05) with GLI. Hindlimb muscle BF (CON: 144 ± 10, GLI: 120 ± 9 ml min⁻¹ (100 g)⁻¹, P < 0.05) and VC were lower with GLI during exercise but not at rest. Specifically, GLI decreased BF in 12, and VC in 16, of the 28 individual hindlimb muscles and muscle parts sampled during exercise with a greater fractional reduction present in muscles comprised predominantly of type I and type IIa fibres (P < 0.05). Additionally, blood [lactate] (CON: 2.0 ± 0.3; GLI: 4.1 ± 0.9 mmol L⁻¹, P < 0.05) was higher during exercise with GLI. That KATP channel blockade reduces hindlimb muscle BF during exercise in rats supports the obligatory contribution of KATP channels in large muscle mass exercise-induced hyperaemia

    The Λp\bf{\Lambda p} interaction studied via femtoscopy in p + Nb reactions at sNN=3.18 GeV\mathbf{\sqrt{s_{NN}}=3.18} ~\mathrm{\bf{GeV}}

    Full text link
    We report on the first measurement of pΛp\Lambda and pppp correlations via the femtoscopy method in p+Nb reactions at sNN=3.18 GeV\mathrm{\sqrt{s_{NN}}=3.18} ~\mathrm{GeV}, studied with the High Acceptance Di-Electron Spectrometer (HADES). By comparing the experimental correlation function to model calculations, a source size for pppp pairs of r0,pp=2.02±0.01(stat)0.12+0.11(sys) fmr_{0,pp}=2.02 \pm 0.01(\mathrm{stat})^{+0.11}_{-0.12} (\mathrm{sys}) ~\mathrm{fm} and a slightly smaller value for pΛp\Lambda of r0,Λp=1.62±0.02(stat)0.08+0.19(sys) fmr_{0,\Lambda p}=1.62 \pm 0.02(\mathrm{stat})^{+0.19}_{-0.08}(\mathrm{sys}) ~\mathrm{fm} is extracted. Using the geometrical extent of the particle emitting region, determined experimentally with pppp correlations as reference together with a source function from a transport model, it is possible to study different sets of scattering parameters. The pΛp\Lambda correlation is proven sensitive to predicted scattering length values from chiral effective field theory. We demonstrate that the femtoscopy technique can be used as valid alternative to the analysis of scattering data to study the hyperon-nucleon interaction.Comment: 12 pages, 11 figure

    Divergent Modulation of Neuronal Differentiation by Caspase-2 and -9

    Get PDF
    Human Ntera2/cl.D1 (NT2) cells treated with retinoic acid (RA) differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2) or -9 (si-Casp9) was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM), microtubule associated protein-2 (MAP2) and tyrosine hydroxylase (TH) mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved) in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells

    To defer or not to defer? A German longitudinal multicentric assessment of clinical practice in urology during the COVID-19 pandemic

    Get PDF
    Introduction After the outbreak of COVID-19 unprecedented changes in the healthcare systems worldwide were necessary resulting in a reduction of urological capacities with postponements of consultations and surgeries. Material and methods An email was sent to 66 urological hospitals with focus on robotic surgery (RS) including a link to a questionnaire (e.g. bed/staff capacity, surgical caseload, protection measures during RS) that covered three time points: a representative baseline week prior to COVID-19, the week of March 16th-22nd and April 20th-26th 2020. The results were evaluated using descriptive analyses. Results 27 out of 66 questionnaires were analyzed (response rate: 41%). We found a decrease of 11% in hospital beds and 25% in OR capacity with equal reductions for endourological, open and robotic procedures. Primary surgical treatment of urolithiasis and benign prostate syndrome (BPS) but also of testicular and penile cancer dropped by at least 50% while the decrease of surgeries for prostate, renal and urothelial cancer (TUR-B and cystectomies) ranged from 15 to 37%. The use of personal protection equipment (PPE), screening of staff and patients and protection during RS was unevenly distributed in the different centers\u2013however, the number of COVID-19 patients and urologists did not reach double digits. Conclusion The German urological landscape has changed since the outbreak of COVID-19 with a significant shift of high priority surgeries but also continuation of elective surgical treatments. While screening and staff protection is employed heterogeneously, the number of infected German urologists stays low

    Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how <it>Rb</it>-deficiency would affect responses to TGFβ-induced cell cycle arrest.</p> <p>Results</p> <p>Primary hepatocytes isolated from <it>Rb-floxed </it>mice were infected with an adenovirus expressing CRE-recombinase to delete the <it>Rb </it>gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16<sup>INK4A </sup>and P21<sup>Cip </sup>and reduction of E2F activity. In <it>Rb</it>-null hepatocytes, cMYC activity decreased slightly but P16<sup>INK4A </sup>was not activated and the great majority of cells continued cycling. <it>Rb </it>is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some <it>Rb</it>-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21<sup>Cip1 </sup>and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of <it>p53 </it>and <it>p21</it><sup><it>Cip1</it></sup>. Hepatocytes deficient in <it>p53 or p21</it><sup><it>Cip1 </it></sup>showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21<sup>Cip </sup>and P53 work through the same pathway to regulate G1/S in response to TGFβ. In <it>Rb</it>-deficient cells however, <it>p53 </it>but not <it>p21</it><sup><it>Cip </it></sup>deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity.</p> <p>Conclusion</p> <p>The present results show that otherwise genetically normal hepatocytes with disabled <it>p53</it>, <it>p21</it><sup><it>Cip1 </it></sup>or <it>Rb </it>genes respond less well to the antiproliferative effects of TGFβ. As the function of these critical cellular proteins can be impaired by common causes of chronic liver disease and HCC, including viral hepatitis B and C proteins, we suggest that disruption of pRb function, and to a lesser extend P21<sup>Cip1 </sup>and P53 in hepatocytes may represent an additional new mechanism of escape from TGFβ-growth-inhibition in the inflammatory milieu of chronic liver disease and contribute to cancer development.</p

    Measurement of global polarization of {\Lambda} hyperons in few-GeV heavy-ion collisions

    Full text link
    The global polarization of {\Lambda} hyperons along the total orbital angular momentum of a relativistic heavy-ion collision is presented based on the high statistics data samples collected in Au+Au collisions at \sqrt{s_{NN}} = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the hyperon transverse momentum (p_T) and rapidity (y_{CM}) for the range of centrality 0--40%. We observe a strong centrality dependence of the polarization with an increasing signal towards peripheral collisions. For mid-central (20--40%) collisions the polarization magnitudes are (%) = 6.0 \pm 1.3 (stat.) \pm 2.0 (syst.) for Au+Au and (%) = 4.6 \pm 0.4 (stat.) \pm 0.5 (syst.) for Ag+Ag, which are the largest values observed so far. This observation thus provides a continuation of the increasing trend previously observed by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted by 3D fluid dynamics and the UrQMD plus thermal vorticity model and significantly above results from the AMPT model.Comment: 8 pages, 4 figure

    Strange hadron production at SIS energies: an update from HADES

    Get PDF
    We present and discuss recent experimental activities of the HADES collaboration on open and hidden strangeness production close or below the elementary NN threshold. Special emphasis is put on the feed-down from ϕ mesons to antikaons, the presence of the Ξ(-) excess in cold nuclear matter and the comparison of statistical model rates to elementary p+p data. The implications for the interpretation of heavy-ion data are discussed as well
    corecore