283 research outputs found

    A generalised unsteady hybrid DES/BEM methodology applied to propeller-rudder flow simulation

    Get PDF
    A generalised hybrid viscous/inviscid flow model for the hydrodynamic analysis of marine propellers is presented. A Boundary Element Method (BEM) to predict propeller perturbation under inviscid-flow assumptions is combined with a Navier-Stokes solver to describe the viscous, turbulent flow with propeller effects recast as volume-force terms from BEM. In the present study, the viscous flow solution is based on a Detached Eddy Simulation (DES) model valid for unsteady flows. A numerical application is presented by considering a notional propeller-rudder assembly, and results from the hybrid DES/BEM solution are validated by comparisons with full DES. The validation study demonstrates the capability of the proposed hybrid viscous/inviscid flow model to describe transient propeller-induced flow perturbation and of propeller/rudder interaction in spite of the fact that the geometry of propeller blades is not resolved but described via a simple and fast volume force model

    A generalised fully unsteady hybrid RANS/BEM model for marine propeller flow simulations

    Get PDF
    A generalised hybrid RANSE/BEM model for the analysis of hull/propeller interaction in ship hydrodynamics problems at reduced computational cost is presented. Akin to standard hybrid RANSE/BEM models, the coupling between viscous and inviscid- flow solvers is based on a volume-force/effective-inflow approach. The generalization con- sists in coupling a time-accurate solution by BEM of the unsteady flow around the rotating propeller with the solution of the surrounding viscous-flow by unsteady RANSE to account for transient-flow propeller perturbation. The methodology is validated through numeri- cal applications to a simple case study describing a propeller in uniform flow conditions. Numerical results by the proposed hybrid RANSE/BEM model are compared with results by full-RANSE simulations and the capability of the methodology to correctly describe transient propeller flow perturbation to a surrounding viscous flow is investigated

    Hyaluronan and cardiac regeneration

    Get PDF
    Hyaluronan (HA) is abundantly expressed in several human tissues and a variety of roles for HA has been highlighted. Particularly relevant for tissue repair, HA is actively produced during tissue injury, as widely evidenced in wound healing investigations. In the heart HA is involved in physiological functions, such as cardiac development during embryogenesis, and in pathological conditions including atherosclerosis and myocardial infarction. Moreover, owing to its relevant biological properties, HA has been widely used as a biomaterial for heart regeneration after a myocardial infarction. Indeed, HA and its derivatives are biodegradable and biocompatible, promote faster healing of injured tissues, and support cells in relevant processes including survival, proliferation, and differentiation. Injectable HA-based therapies for cardiovascular disease are gaining growing attention because of the benefits obtained in preclinical models of myocardial infarction. HA-based hydrogels, especially as a vehicle for stem cells, have been demonstrated to improve the process of cardiac repair by stimulating angiogenesis, reducing inflammation, and supporting local and grafted cells in their reparative functions. Solid-state HA-based scaffolds have been also investigated to produce constructs hosting mesenchymal stem cells or endothelial progenitor cells to be transplanted onto the infarcted surface of the heart. Finally, applying an ex-vivo mechanical stretching, stem cells grown in HA-based 3D scaffolds can further increase extracellular matrix production and proneness to differentiate into muscle phenotypes, thus suggesting a potential strategy to create a suitable engineered myocardial tissue for cardiac regeneration

    Liver Resection after Downstaging Hepatocellular Carcinoma with Sorafenib

    Get PDF
    Background. Sorafenib is a molecular-targeted therapy used in palliative treatment of advanced hepatocellular carcinoma in Child A patients. Aims. To address the question of sorafenib as neoadjuvant treatment. Methods. We describe the cases of 2 patients who had surgery after sorafenib. Results. The patients had a large hepatocellular carcinoma in the right liver with venous neoplastic thrombi (1 in the right portal branch, 1 in the right hepatic vein). After 9 months of sorafenib, reassessment showed that tumours had decreased in size with a necrotic component. A right hepatectomy with thrombectomy was performed, and histopathology showed 35% to 60% necrosis. One patient had a recurrence after 6 months and had another liver resection; they are both recurrence-free since then. Conclusion. Sorafenib can downstage hepatocellular carcinoma and thus could represent a bridge to surgery. It may be possible to select patients in good general condition with partial regression of the tumour with sorafenib for a treatment in a curative intent

    ANNALS OF GEOPHYSICS: AD MAJORA

    Get PDF
    Annals of Geophysics (ISSN: 1593-5213; from 2010, 2037-416X) is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica (ISSN: 0365-2556), which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, Earth magnetism, and atmospheric studies...

    Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band

    Get PDF
    This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles

    Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm −1

    Get PDF
    The paper presents a novel methodology to retrieve the foreign-broadened water vapor continuum absorption coefficients in the spectral range 240 to 590 cm−1 and is the first estimation of the continuum coefficient at wave numbers smaller than 400 cm−1 under atmospheric conditions. The derivation has been accomplished by processing a suitable set of atmospheric emitted spectral radiance observations obtained during the March 2007 Alps campaign of the ECOWAR project (Earth COoling by WAter vapor Radiation). It is shown that, in the range 450 to 600 cm−1, our findings are in good agreement with the widely used Mlawer, Tobin-Clough, Kneizys-Davies (MT_CKD) continuum. Below 450 cm−1 however the MT_CKD model overestimates the magnitude of the continuum coefficient.Published15816-158331.8. Osservazioni di geofisica ambientaleJCR Journalreserve

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∼0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∼5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∼±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering

    Get PDF
    International audienceThe challenge of tissue engineering of the infarcted heart is how to improve stem cell engraftment, survival, homing, and differentiation for myocardial repair. We here propose to integrate human adipose-derived stem cells (ADSCs) and pharmacologically active microcarriers (PAMs), a three-dimensional (3D) carrier of cells and growth factors, into an injectable hydrogel (HG), to obtain a system that stimulates the survival and/or differentiation of the grafted cells toward a cardiac phenotype. PAMs are biodegradable and non-cytotoxic poly(lactic-co-glycolic acid) (PLGA) microspheres conveying cells on their 3D surface that deliver continuously and in a controlled manner a growth factor (GF) acting on the transported cells and on the microenvironment to improve engraftment. The choice of the appropriate GF and its protection during the formulation process and delivery are essential. In this study two GFs, hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1), have been encapsulated under a solid state in order to limit their interaction with the polymer and conserve their integrity. GF precipitation conditions and release profile from PAMs have been first investigated before combining them to ADSCs. The released IGF-1 and HGF induced the protein synthesis of cardiac differentiation markers GATA4, Nkx2.5, cTnI and CX43 after 1 week in vitro. Moreover, the GFs accelerated cell cycle progression, as suggested by the increased expression of Cyclin D1 mRNA and the widespread distribution of Ki67 protein. Integrating PAMs within the thermosensitive P407 hydrogel increased their elastic properties but decreased the transcription of most cardiac markers. In contrast, CX43 expression increased in ADSC–PAM–GF complexes embedded within the hydrogel compared to the ADSCs cultured alone in the absence of P407. These results suggest that particulate scaffolds releasing HGF and IGF-1 may be beneficial for applications in tissue-engineering strategies for myocardial repair and the association with a P407 hydrogel can increase substrate elasticity and junction connections in ADSCs
    corecore