1,382 research outputs found

    Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour

    Full text link
    Putative global minima of sodium clusters with up to 380 atoms have been located for two model interatomic potentials. Structures based upon the Mackay icosahedra predominate for both potentials, and the magic numbers for the Murrell-Mottram model show excellent agreement with the sizes at which maxima in the latent heat and entropy change at melting have been found in experiment.Comment: 4 pages, 2 figure

    Regulation of the apoptotic genes in breast cancer cells by the transcription factor CTCF

    Get PDF
    CTCF is a highly conserved and ubiquitous transcription factor with versatile functions. We previously demonstrated that elevated protein levels of CTCF in breast cancer cells were associated with the specific anti-apoptotic function of CTCF. We used proteomics and microarray approaches to identify regulatory targets of CTCF specific for breast cancer cells. Among the CTCF identified targets were proteins involved in the control of apoptosis. A proapoptotic protein, Bax, negatively regulated by CTCF, was chosen for further investigation. Repression of the human Bax gene at the transcriptional level by CTCF in breast cancer cells was confirmed by real-time PCR. Two CTCF binding sites within the Bax promoter were identified by electrophoretic mobility shift assay and footprinting. In reporter assays, the Bax-luciferase reporter construct, containing CTCF-binding sites, was negatively regulated by CTCF. In vivo, CTCF occupied its binding sites in breast cancer cells and tissues, as confirmed by chromatin immunoprecipitation assay. Our findings suggest a possible mechanism of the specific CTCF anti-apoptotic function in breast cancer cells whereby CTCF is bound to the Bax promoter, resulting in repression of Bax and inhibition of apoptosis; depletion of CTCF leads to activation of Bax and apoptotic death. CTCF binding sites in the Bax promoter are unmethylated in all cells and tissues inspected. Therefore, specific CTCF interaction with the Bax promoter in breast cancer cells, and the functional outcome, may depend on a combination of epigenetic factors characteristic for these cells. Interestingly, CTCF appears to be a negative regulator of other proapoptotic genes (for example, Fas, Apaf-1, TP531NP1). Conversely, stimulating effects of CTCF on the anti-apoptotic genes (Bcl-2, Bag-3) have been observed. Taken together, these findings suggest that specific mechanisms have evolved in breast cancer cells to protect them from apoptosis; regulation of apoptotic genes by CTCF appears to be one of the resistance strategies

    Fast and Reliable Differentiation of Eight Trichinella Species Using a High Resolution Melting Assay

    Get PDF
    High resolution melting analysis (HRMA) is a single-tube method, which can be carried out rapidly as an additional step following real-time quantitative PCR (qPCR). The method enables the differentiation of genetic variation (down to single nucleotide polymorphisms) in amplified DNA fragments without sequencing. HRMA has previously been adopted to determine variability in the amplified genes of a number of organisms. However, only one work to date has focused on pathogenic parasites–nematodes from the genus Trichinella. In this study, we employed a qPCR-HRMA assay specifically targeting two sequential gene fragments–cytochrome c oxidase subunit I (COI) and expansion segment V (ESV), in order to differentiate 37 single L1 muscle larvae samples of eight Trichinella species. We prove that qPCR-HRMA based on the mitochondrial COI gene allows differentiation between the sequences of PCR products of the same length. This simple, rapid and reliable method can be used to identify at the species level single larvae of eight Trichinella taxa.High resolution melting analysis (HRMA) is a single-tube method, which can be carried out rapidly as an additional step following real-time quantitative PCR (qPCR). The method enables the differentiation of genetic variation (down to single nucleotide polymorphisms) in amplified DNA fragments without sequencing. HRMA has previously been adopted to determine variability in the amplified genes of a number of organisms. However, only one work to date has focused on pathogenic parasites–nematodes from the genus Trichinella. In this study, we employed a qPCR-HRMA assay specifically targeting two sequential gene fragments–cytochrome c oxidase subunit I (COI) and expansion segment V (ESV), in order to differentiate 37 single L1 muscle larvae samples of eight Trichinella species. We prove that qPCR-HRMA based on the mitochondrial COI gene allows differentiation between the sequences of PCR products of the same length. This simple, rapid and reliable method can be used to identify at the species level single larvae of eight Trichinella taxa

    Privatization and State Capacity in Postcommunist Society

    Full text link
    Economists have used cross-national regression analysis to argue that postcommunist economic failure is the result of inadequate adherence liberal economic policies. Sociologists have relied on case study data to show that postcommunist economic failure is the outcome of too close adherence to liberal policy recommendations, which has led to an erosion of state effectiveness, and thus produced poor economic performance. The present paper advances a version of this statist theory based on a quantitative analysis of mass privatization programs in the postcommunist world. We argue that rapid large-scale privatization creates severe supply and demand shocks for enterprises, thereby inducing firm failure. The resulting erosion of tax revenues leads to a fiscal crisis for the state, and severely weakens its capacity and bureaucratic character. This, in turn, reacts back on the enterprise sector, as the state can no longer support the institutions necessary for the effective functioning of a modern economy, thus resulting in deindustrialization. Using cross-national regression techniques we find that the implementation of mass privatization programs negatively impacts measures of economic growth, state capacity and the security of property rights.http://deepblue.lib.umich.edu/bitstream/2027.42/40192/3/wp806.pd

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished
    corecore