183 research outputs found

    Incidence of symptomatic toxoplasma eye disease: aetiology and public health implications.

    Get PDF
    Ocular disease is the commonest disabling consequence of toxoplasma infection. Incidence and lifetime risk of ocular symptoms were determined by ascertaining affected patients in a population-based, active reporting study involving ophthalmologists serving a population of 7.4 million. Eighty-seven symptomatic episodes were attributed to toxoplasma infection. Bilateral visual acuity of 6/12 or less was found in seven episodes (8%) and was likely to have been transient in most cases. Black people born in West Africa had a 100-fold higher incidence of symptoms than white people born in Britain. Only two patients reported symptoms before 10 years of age. The estimated lifetime risk of symptoms in British born individuals (52% of all episodes) was 18/100000 (95% confidence interval: 10.8-25.2). The low risk and mild symptoms in an unscreened British population indicate limited potential benefits of prenatal or postnatal screening. The late age at presentation suggests a mixed aetiology of postnatally acquired and congenital infection for which primary prevention may be appropriate, particularly among West Africans

    The Cluster and Field Galaxy AGN Fraction at z = 1 to 1.5: Evidence for a Reversal of the Local Anticorrelation Between Environment and AGN Fraction

    Full text link
    The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 10^{14} Msun) at 1<z<1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z~3. We estimate that the cluster AGN fraction at 1<z<1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGN with a rest-frame, hard X-ray luminosity greater than L_{X,H} >= 10^{44} erg/s. This fraction is measured relative to all cluster galaxies more luminous than M*_{3.6}(z)+1, where M*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6um bandpass. The cluster AGN fraction is 30 times greater than the 3sigma upper limit on the value for AGN of similar luminosity at z~0.25, as well as more than an order of magnitude greater than the AGN fraction at z~0.75. AGN with L_{X,H} >= 10^{43} erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1<z<1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z~1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.Comment: ApJ Accepted. 16 pages, 8 figures in emulateapj forma

    IDCS J1433.2+3306: An IR-Selected Galaxy Cluster at z = 1.89

    Full text link
    We report the discovery of an IR-selected galaxy cluster in the IRAC Distant Cluster Survey (IDCS). New data from the Hubble Space Telescope spectroscopically confirm IDCS J1433.2+3306 at z = 1.89 with robust spectroscopic redshifts for seven members, two of which are based on the 4000 Angstrom break. Detected emission lines such as [OII] and Hbeta indicate star formation rates of >20 solar masses per year for three galaxies within a 500 kpc projected radius of the cluster center. The cluster exhibits a red sequence with a scatter and color indicative of a formation redshift z > 3.5. The stellar age of the early-type galaxy population is approximately consistent with those of clusters at lower redshift (1 < z < 1.5) suggesting that clusters at these redshifts are experiencing ongoing or increasing star formation.Comment: Accepted in Ap

    SPT-CL J0205-5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel'dovich Effect Survey

    Get PDF
    The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically-confirmed redshift, z=1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of Tx=8.7keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich derived mass. The combined SZ and X-ray mass estimate of M500=(4.9+/-0.8)e14 h_{70}^{-1} Msun makes it the most massive known SZ-selected galaxy cluster at z>1.2 and the second most massive at z>1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was <5 Gyr old, with stellar population ages >3 Gyr, and low rates of star formation (<0.5Msun/yr). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat LambdaCDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg^2 SPT-SZ survey is 69%.Comment: 11 pages, 5 figures, submitted to Ap

    SPT-CL J0546-5345: A Massive z > 1 Galaxy Cluster Selected Via the Sunyaev-Zel'dovich Effect with the South Pole Telescope

    Get PDF
    We report the spectroscopic confirmation of SPT-CL J0546-5345 at = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179^{+232}_{-167} km/s, ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M_200 = 1.0^{+0.6}_{-0.4} x 10^{15} Msun, in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M_200 = (7.95 +/- 0.92) x 10^{14} Msun. The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high redshift SZE-selected galaxy cluster era.Comment: ApJ, in pres

    Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion σv\sigma_v and X-ray YXY_\textrm{X} Measurements

    Full text link
    We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv\sigma_v) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using σv\sigma_v and Yx are consistent at the 0.6σ0.6\sigma level, with the σv\sigma_v calibration preferring ~16% higher masses. We use the full cluster dataset to measure σ8(Ωm/0.27)0.3=0.809±0.036\sigma_8(\Omega_ m/0.27)^{0.3}=0.809\pm0.036. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is mν=0.06\sum m_\nu=0.06 eV, we find the datasets to be consistent at the 1.0σ\sigma level for WMAP9 and 1.5σ\sigma for Planck+WP. Allowing for larger mν\sum m_\nu further reconciles the results. When we combine the cluster and Planck+WP datasets with BAO and SNIa, the preferred cluster masses are 1.9σ1.9\sigma higher than the Yx calibration and 0.8σ0.8\sigma higher than the σv\sigma_v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe dataset, we measure Ωm=0.299±0.009\Omega_ m=0.299\pm0.009 and σ8=0.829±0.011\sigma_8=0.829\pm0.011. Within a ν\nuCDM model we find mν=0.148±0.081\sum m_\nu = 0.148\pm0.081 eV. We present a consistency test of the cosmic growth rate. Allowing both the growth index γ\gamma and the dark energy equation of state parameter ww to vary, we find γ=0.73±0.28\gamma=0.73\pm0.28 and w=1.007±0.065w=-1.007\pm0.065, demonstrating that the expansion and the growth histories are consistent with a LCDM model (γ=0.55;w=1\gamma=0.55; \,w=-1).Comment: Accepted by ApJ (v2 is accepted version); 17 pages, 6 figure

    The Redshift Evolution of the Mean Temperature, Pressure, and Entropy Profiles in 80 SPT-Selected Galaxy Clusters

    Full text link
    (Abridged) We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg^2 South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing an X-ray fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0<r<1.5R500, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z=0 to z=1.2. We find that high-z (0.6<z<1.2) clusters are slightly (~40%) cooler both in the inner (rR500) regions than their low-z (0.3<z<0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at rR500 in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3x) rate at which group-mass (~2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z~1. This work demonstrates a powerful method for inferring spatially-resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.Comment: 17 pages, 13 figures, submitted to ApJ. Updated following referee repor

    Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey

    Get PDF
    (abridged) We present cosmological constraints obtained from galaxy clusters identified by their Sunyaev-Zel'dovich effect signature in the 2500 square degree South Pole Telescope Sunyaev Zel'dovich survey. We consider the 377 cluster candidates identified at z>0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a LCDM cosmology, where the species-summed neutrino mass has the minimum allowed value (mnu = 0.06 eV) from neutrino oscillation experiments, we combine the cluster data with a prior on H0 and find sigma_8 = 0.797+-0.031 and Omega_m = 0.289+-0.042, with the parameter combination sigma_8(Omega_m/0.27)^0.3 = 0.784+-0.039. These results are in good agreement with constraints from the CMB from SPT, WMAP, and Planck, as well as with constraints from other cluster datasets. Adding mnu as a free parameter, we find mnu = 0.14+-0.08 eV when combining the SPT cluster data with Planck CMB data and BAO data, consistent with the minimum allowed value. Finally, we consider a cosmology where mnu and N_eff are fixed to the LCDM values, but the dark energy equation of state parameter w is free. Using the SPT cluster data in combination with an H0 prior, we measure w = -1.28+-0.31, a constraint consistent with the LCDM cosmological model and derived from the combination of growth of structure and geometry. When combined with primarily geometrical constraints from Planck CMB, H0, BAO and SNe, adding the SPT cluster data improves the w constraint from the geometrical data alone by 14%, to w = -1.023+-0.042
    corecore