52 research outputs found
Rheological Investigation of the Shear Strength, Durability, and Recovery of Alginate Rafts Formed By Antacid Medication in Varying pH Environments
The mechanical response of alginate rafts formed by mixing liquid alginate antacid medication (GavisconÂź Extra Strength Liquid Antacid) with acidic solutions was investigated by deforming isolated rafts in a shear rheometer. As rafts were deformed to varying magnitudes of applied strain, rheological parameters were identified and related to the overall strength, durability, and recoverability of rafts formed at different pH (1.1 â 1.7) and aging conditions (0.5 â 4 hr). Rafts formed in the lowest acidity solutions (pH 1.4, 1.7) were elastically weak (G0â = 60, 42 Pa for un-aged raft) yet maintained their elasticity during applied shear deformation to large values of strain (Îłc~ 90%, 50%, where Gâ â Gââ), and displayed a low-to-moderate level of elastic recovery following large-strain deformation. Rafts formed in the highest acidity solution had the greatest strength (G0â = 500 Pa for un-aged raft and 21.5 kPa for rafts after 0.5 hr of aging), reduced durability (Îłc~ 2.5%, independent of aging), and displayed the greatest recoverability. A trade-off existed between un-aged raft strength and durability while recovery was dependent on durability, solution pH, and age. Rheometry-based evaluations of alginate rafts could be used for the informed design of future gastric retention and antacid products
Technical Note: Benchmark time-temperature paths provide a shared framework for evaluating and communicating thermochronologic data interpretation
We present a set of six time-temperature (tT) histories, called benchmark paths, that can be used as a shared framework for evaluating the sensitivity of a thermochronologic system to the variables inherent in the interpretation of thermochronologic data (e.g., kinetics models, mineral compositions or geometries, etc.). These benchmark paths span 100 Myr, include monotonic and nonmonotonic histories that represent plausible geologic scenarios, and have a range of cooling rates through different chronometer partial-retention/annealing temperatures. Here, we demonstrate their utility by presenting a method for tuning these paths to 11 different kinetics models for the apatite (U-Th-Sm)/He (n=5), apatite fission-track (n=2), and zircon (U-Th)/He (n=4) systems. These tuned tT paths provide a practical comparison of the kinetics models for each system and the data patterns they predict, thereby offering anyone performing thermal history analysis the ability to consider how their choice of kinetics model may impact their data interpretation. The adoption of benchmark paths for evaluating kinetics models and other variables provides a practical way for the thermochronology community to evaluate and communicate the decision making processes that are inherent in thermochronologic modeling and data interpretation
Bayesian Markov-Chain Monte Carlo Inversion of Low-Temperature Thermochronology Around Two 8 â 10 m Wide Columbia River Flood Basalt Dikes
Flood basalt volcanism involves large volumes of magma emplaced into the crust and surface environment on geologically short timescales. The mechanics of flood basalt emplacement, including dynamics of the crustal magma transport system and the tempo of individual eruptions, are not well-constrained. Here we study two exhumed dikes from the Columbia River Flood Basalt province in northeast Oregon, USA, using apatite and zircon (U-Th)/He thermochronology to constrain dike emplacement histories. Sample transects perpendicular to the dike margins document transient heating of granitic host rocks. We model heating as due to dike emplacement, considering a thermal model with distinct melt-fraction temperature relationships for basaltic magma and granitic wallrock, and a parameterization of unsteady flow within the dike. We model partial resetting of thermochronometers by considering He diffusion in spherical grains as a response to dike heating. A Bayesian Markov-Chain Monte Carlo framework is used to jointly invert for six parameters related to dike emplacement and grain-scale He diffusion. We find that the two dikes, despite similar dimensions on an outcrop scale, exhibit different spatial patterns of thermochronometer partial resetting away from the dike. These patterns predict distinct emplacement histories. We extend previous modeling of a presumed feeder dike at Maxwell Lake in the Wallowa Mountains of northeastern Oregon, finding posterior probability distribution functions (PDFs) that predict steady heating from sustained magma flow over 1â6 years and elevated farfield host rock temperatures. This suggests regional-scale heating in the vicinity of Maxwell Lake, which might arise from nearby intrusions. The other dike, within the Cornucopia subswarm, is predicted to have a 1â4 year thermally active lifespan with an unsteady heating rate suggestive of low magma flow rate compared to Maxwell Lake, in a cool near-surface thermal environment. In both cases, misfit of near-dike partial resetting of thermochronometers by models suggests either heat transfer via fluid advection in host rocks or pulsed magma flow in the dikes. Our results highlight the diversity of dike emplacement histories within the Columbia River Flood Basalt province and the power of Bayesian inversion methods for quantifying parameter trade-offs and uncertainty in thermal models
Influence of Adsorbed and Nonadsorbed Polymer Additives on The Viscosity of Magnesium Oxide Suspensions
Adsorbed polymer additives have been employed to reduce water content and improve cement workability through lowering viscosity, but the influence of over-dosage and the presence of nonadsorbed chains have yet to be fully understood. Model magnesium oxide (MgO) suspensions were used to investigate the potential processing effect of âfreeâ chain concentration on cementitious mixtures. The rheological impact of the free chains was measured through incorporation of nonadsorbing poly(ethylene glycol) (PEG) to suspensions stabilized with an adsorbed comb-polymer superplasticizer. Analyses of the rheological data, that showed viscosity-increases and viscosity-reduction due to free PEG concentrations revealed a transition from depletion flocculation to depletion stabilization that contributed to the flow properties of the suspensions. The viscosity-reduction observed for high concentrations of free chains may be useful for improved mixing of cements with free polymer in addition to the adsorbed polycarboxylate etherbased superplasticizer. Additionally, the influence of free PEG on the macroscale flow behavior was also examined through local velocity measurements under shear
Detrital-Zircon Geochronology of the Metasedimentary Rocks of North-Western Graham Land
Metasedimentary rocks constitute an important but comparatively poorly understood part of the Antarctic Peninsula. Herein we report single-grain U-Pb detrital-zircon ages from samples of the Trinity Peninsula and Botany Bay Groups of north-western Graham Land. All studied samples are dominated by a large and narrowly defined population of late Palaeozoic zircons. Significant earlyâmiddle Palaeozoic and minor Neoproterozoic and Mesoproterozoic sub-populations constitute the majority of pre-Carboniferous grains. These detrital-zircon age populations are consistent with sediment derivation entirely from western Gondwana sources. Despite the clear Gondwana signatures, our data suggest that the Trinity Peninsula Group province was either a parautochthonous peri-Gondwanan terrane later accreted to the Antarctic Peninsula, or a significant topographic barrier precluded voluminous sediment contributions from the interior of Gondwana. Statistical comparisons with similar metasedimentary complexes of southern South America, the South Shetland Islands and eastern New Zealand indicate a diversity of sediment provenance not previously recognized, but may provide a means to better determine the pre-break-up configuration of western Gondwana. Although insufficient to definitively restore Antarctic Peninsula components adjacent to South American complexes, some Trinity Peninsula Group samples exhibit robust affinities to the Miers Bluff Formation in the South Shetland Islands and the Duque de York and Main Range Metamorphic Complexes of the Patagonian Andes
Thermal history modeling techniques and interpretation strategies: applications using HeFTy
Advances in low-temperature thermochronology, and the wide range of geologic problems that it is used to investigate, have prompted the routine use of thermal history (time-temperature, tT) models to quantitatively explore and evaluate rock cooling ages. As a result, studies that investigate topics ranging from Proterozoic tectonics to Pleistocene erosion now commonly require a substantial numerical modeling effort that combines the empirical understanding of chronometer thermochemical behavior (kinetics) with independent knowledge or hypotheses about a study areaâs geologic history (geologic constraints). Although relatively user-friendly programs, such as HeFTy and QTQt, are available to facilitate thermal history modeling, there is a critical need to provide the geoscience community with more accessible entry points for using these tools. This contribution addresses this need by offering an explicit discussion of modeling strategies in the program HeFTy. Using both synthetic data and real examples, we illustrate the opportunities and limitations of thermal history modeling. We highlight the importance of testing the sensitivity of model results to model design choices and describe a strategy for classifying model results that we call the Path Family Approach. More broadly, we demonstrate how HeFTy can be used to build an intuitive understanding of the thermochronologic data types and model design strategies that are capable of discriminating among geologic hypotheses
Thermal history modeling techniques and interpretation strategies: applications using QTQt
Advances in low-temperature thermochronology have made it applicable to a plethora of geoscience investigations. The development of modeling programs (e.g., QTQt and HeFTy) that extract thermal histories from thermochronologic data has facilitated growth of this field. However, the increasingly wide range of scientists who apply these tools requires an accessible entry point to thermal history modeling and how these models develop our understanding of complex geological processes. This contribution offers a discussion of modeling strategies, using QTQt, including making decisions about model design, data input, kinetic parameters, and other factors that may influence the model output. We present a suite of synthetic data sets derived from known thermal histories with accompanying tutorial exercises in the Supplemental Material. These data sets illustrate the opportunities and limitations of thermal history modeling. Examining these synthetic data helps to develop intuition about which thermochronometric data are most sensitive to different thermal events and to what extent user decisions on data handling and model setup can control the recovery of the true solution. We also use real data to demonstrate the importance of incorporating sensitivity testing into thermal history modeling and suggest several best practices for exploring model sensitivity to factors including, but not limited to, the model design or inversion algorithm, geologic constraints, data trends, the spatial relationship between samples, or the choice of kinetics model. Finally, we provide a detailed and explicit workflow and an applied example for a method of interrogating vague model results or low observation-prediction fits that we call the âPath Structure Approach.â Our explicit examination of thermal history modeling practices is designed to guide modelers to identify the factors controlling model results and demonstrate reproducible approaches for the interpretation of thermal histories
Toward Robust Interpretation of LowâTemperature Thermochronometers in Magmatic Terranes
Many regions central to our understanding of tectonics and landscape evolution are active or ancient magmatic terranes, and robust interpretation of lowâtemperature thermochronologic ages in these settings requires careful attention to the drivers of rock heating and cooling, including magmatism. However, we currently lack a quantitative framework for evaluating the potential role of magmatic coolingâthat is, postâmagmatic thermal relaxationâin shaping cooling age patterns in regions with a history of intrusive magmatism. Here we use analytical approximations and numerical models to characterize how lowâtemperature thermochronometers document cooling inside and around plutons in steadily exhuming environments. Our models predict that the thermal field a pluton intrudes into, specifically the ambient temperatures relative to the closure temperature of a given thermochronometer, is as important as the pluton size and temperature in controlling the pattern and extent of thermochronometer resetting in the country rocks around a pluton. We identify one advective and several conductive timescales that govern the relationship between the crystallization and cooling ages inside a pluton. In synthetic vertical ageâelevation relationships (AERs), resetting next to plutons results in changes in AER slope that could be misinterpreted as past changes in exhumation rate if the history of magmatism is not accounted for. Finally, we find that large midcrustal plutons, such as those emplaced at ~10â15âkm depth, can reset the lowâtemperature thermochronometers far above them in the upper crustâa result with considerable consequences for thermochronology in arcs and regions with a history of magmatic activity that may not have a surface expression.Key PointsIntrusive magmatism may produce important firstâorder effects on patterns of lowâtemperature thermochronometer coolingAnalytical approximations and numerical models predict cooling ages in and around crustal plutons in steadily exhuming environmentsLarge plutons emplaced in the middle crust at 10â15âkm depth can reset lowâtemperature thermochronometers in the upper crustPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146628/1/ggge21696.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146628/2/ggge21696_am.pd
Effect of Intervention With the Self-Determined Learning Model of Instruction on Access and Goal Attainment
Promoting self-determination has been identified as best practice in special education and transition services and as a means to promote goal attainment and access to the general education curriculum for students with disabilities. There have been, however, limited evaluations of the effects of interventions to promote self-determination on outcomes related to access to the general education curriculum. This article reports findings from a cluster or group-randomized trial control group study examining the impact of intervention using the Self-Determined Learning Model of Instruction on studentsâ academic and transition goal attainment and on access to the general education curriculum for students with intellectual disability and learning disabilities. Findings support the efficacy of the model for both goal attainment and access to the general education curriculum, though students varied in the patterns of goal attainment as a function of type of disability.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
- âŠ