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ABSTRACT

Advances in low-​temperature thermochronology have made it applicable to 
a plethora of geoscience investigations. The development of modeling programs 
(e.g., QTQt and HeFTy) that extract thermal histories from thermochronologic 
data has facilitated growth of this field. However, the increasingly wide range of 
scientists who apply these tools requires an accessible entry point to thermal 
history modeling and how these models develop our understanding of complex 
geological processes. This contribution offers a discussion of modeling strate-
gies, using QTQt, including making decisions about model design, data input, 
kinetic parameters, and other factors that may influence the model output. We 
present a suite of synthetic data sets derived from known thermal histories 
with accompanying tutorial exercises in the Supplemental Material1. These 
data sets illustrate the opportunities and limitations of thermal history mod-
eling. Examining these synthetic data helps to develop intuition about which 
thermochronometric data are most sensitive to different thermal events and 
to what extent user decisions on data handling and model set-​up can control 
the recovery of the true solution. We also use real data to demonstrate the 
importance of incorporating sensitivity testing into thermal history modeling 
and suggest several best practices for exploring model sensitivity to factors 
including, but not limited to, the model design or inversion algorithm, geo-
logic constraints, data trends, the spatial relationship between samples, or the 
choice of kinetics model. Finally, we provide a detailed and explicit workflow 
and an applied example for a method of interrogating vague model results or 
low observation-​prediction fits that we call the “Path Structure Approach.” Our 
explicit examination of thermal history modeling practices is designed to guide 
modelers to identify the factors controlling model results and demonstrate 
reproducible approaches for the interpretation of thermal histories.

1 Supplemental Material. Contains tables that detail all model input parameters and decisions, 
figures that show model predictions from sensitivity tests shown in the main text of the manu-
script, and a tutorial accompanied by data and model input files, for becoming familiar with QTQt. 
Please visit https://doi.org/10.1130/GEOS.S.21538512 to access the supplemental material, and 
contact editing@geosociety.org with any questions.

■■ INTRODUCTION

Low-​temperature thermochronology is a popular approach for constrain-
ing the timing of upper-​crustal events and the rates of geological processes. 
Thermochronologic techniques exploit the temperature-​sensitive retention of 
radiogenic decay products in different minerals. Although an “age” is typically 
obtained, the geological significance of that age depends on the geologic 
context and is a product of the length of time the mineral has spent at tem-
peratures where partial retention (or partial loss) of the daughter product 
occurs. In simple rock-​cooling scenarios, the concept of a “closure tempera-
ture” is useful for describing the transition between open‐ and closed‐system 
behavior and the relative temperature sensitivities of thermochronometers 
(Dodson, 1973). In this concept, daughter products are not retained in the 
mineral at temperatures hotter than the closure temperature. As a rock cools, 
daughter products begin to accumulate as the system closes. The rate of 
daughter retention increases as temperature decreases until it is sufficiently 
cold enough that daughter products are completely retained. Importantly, a 
thermochronometer’s closure temperature is not constant, because it depends 
on the cooling rate (Dodson, 1973), grain composition (e.g., O’Sullivan and 
Parrish, 1995), and size (e.g., Reiners and Farley, 2001), and even mineral char-
acteristics that are themselves a function of a rock’s thermal history, such as 
accumulated radiation damage (Shuster et al., 2006; Ault et al., 2019; Flowers 
et al., 2022a). Thus, forward and inverse thermal history modeling has become 
an invaluable tool for interpreting cooling ages. Several different numerical 
modeling approaches have been developed to derive thermal histories from 
thermochronologic data (e.g., Gallagher, 1995, 2012; Ketcham et al., 2000; 
Braun, 2003; Zeitler, 2004; Ketcham, 2005; Hager and Stockli, 2009).

Two of the most commonly used thermal history modeling software 
packages are QTQt and HeFTy. Although based on different optimization and 
statistical approaches, they typically yield consistent results (see Ketcham, 2005, 
and Gallagher, 2012, for full details on the methodology of these approaches). 
The increasing popularity of these programs (Fig. 1) can in part be attributed to 
their convenient user interfaces and the availability of user support from the 
developers and peers in the thermochronology community. However, ther-
mal history model solutions are inherently non-​unique; so careful planning 
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and decision making while defining model inputs and choosing parameters 
are needed in order to obtain useful and interpretable results. With increased 
popularity, there has been increased scrutiny over the use of these programs 
to make geological interpretations (Vermeesch and Tian, 2014, 2018, 2019; 
Gallagher and Ketcham, 2018, 2020;  Fox and Carter, 2020).

This contribution discusses modeling styles, strategies, and best practices 
with a goal of guiding users through modeling and interpreting thermochrono-
metric data using QTQt—a discussion that is otherwise relegated to occasional 
workshops, informal mentorship, or the review process. We do not intend 
to provide a direct critique or comparison of modeling programs or outline 
program pitfalls and limitations, which are discussed elsewhere. Instead, we 
highlight the importance of user decision making when designing and per-
forming thermal history modeling with QTQt (Fig. 2). By presenting sensitivity 
tests and case studies, we aim to raise awareness of how user decisions affect 
the model output, outline strategies for novice and experienced users to famil-
iarize themselves with the capabilities of QTQt, and encourage transparent 
reporting of the decision-​making process. The exercises presented here are 
designed specifically for QTQt. Our companion paper (Murray et al., 2022) 
aims to achieve a similar goal for the HeFTy modeling software. However, 
the approaches discussed in both contributions are relevant and important 
to consider no matter which thermal history modeling program is being used.

Our intention is to help users develop an intuitive understanding of mod-
eling methods and results by providing examples of practical strategies for 
modeling different types of thermochronologic data sets, and our examples 
here utilize the apatite fission-​track (AFT) and apatite (U-Th-Sm)/He (AHe) ther-
mochronometers. The AFT system relies on the accumulation of damage trails 
(“fission-​tracks”) in the crystal lattice produced during the spontaneous fission 

of 238U and the partial annealing of these tracks on geologic timescales at tem-
peratures of 60–110 ± 10 °C (partial annealing zone [PAZ]). At temperatures >110 
± 10 °C, tracks are completely annealed, while at temperatures <60 °C, annealing 
is assumed to be negligible (Gleadow et al., 1986). Variations in the chemical 
composition of an apatite grain (primarily due to anion substitution of Cl-​F-​OH) 
has a second-​order influence on the annealing rate of tracks (Carlson et al., 
1999), while anisotropic annealing (e.g., Donelick et al., 1999) and differences in 
chemical etching protocols (Tamer et al., 2019) may cause variability in fission-​
track length data across analysts. The AHe system exploits the accumulation 
of radiogenic 4He produced during the alpha decay of U, Th, and Sm. Similar 
to the AFT PAZ, there exists a temperature range (the partial retention zone 
[PRZ]) where partial diffusive loss of He occurs by thermally activated diffusion. 
The temperature range for the AHe PRZ on geologic timescales is 30–90 °C. 
However, this is dependent on variables such as grain size, rock cooling rate, 
and amount of radiation damage accumulated in a crystal (approximated by 
the effective uranium concentration, [eU] = [U] + 0.235*[Th] + 0.0047*[Sm]) 
(Shuster et al., 2006; Ault et al., 2019). In routine He thermochronology analyses, 
multiple single grains are dated from each sample, and in many cases, He ages 
from single samples are highly variable (also referred to as age “dispersion” 
or “irreproducibility,” e.g., Brown et al., 2013; McDannell et al., 2018; Ault et 
al., 2019; Flowers et al., 2022a). Intra-​sample He age variability can arise from 
various factors, which sometimes coexist in real data sets (e.g., Flowers and 
Kelley, 2011; Murray et al., 2019); see Flowers et al. (2022a) for a recent overview. 
Here, we quantify a sample’s He age variability as the standard deviation of the 
single-​grain ages divided by the mean of single-​grain ages.

First, we illustrate the impact of data input and model design on thermal 
history model results using six synthetic data sets (see companion paper Mur-
ray et al., 2022, for similar analyses in HeFTy). We use forward and inverse 
modeling to demonstrate the effects of various decisions made during the mod-
eling process. First, we use QTQt to generate synthetic data using a forward 
thermal history model, and then we use those synthetic data as input data for 
inverse models, which we run to assess how well we can retrieve the “true” 
time-​temperature (t-T) paths that generated the synthetic data. This approach 
requires six steps: (1) build a generic input file to define the synthetic data we 
wish to generate; (2) define t-T paths to forward models; (3) run forward models 
to predict and generate synthetic data; (4) design inverse models, modifying 
specific input parameters; (5) run inverse models to obtain thermal histories 
and data predictions; and (6) interpret inverse model outputs. We provide a 
tutorial in the Supplemental Material (see footnote 1) to guide readers through 
these exercises for themselves. By working through these exercises with near 

“perfect” data (the He data can be effectively “perfect,” whereas the FT data 
will always have some sampling-​related noise) and known “true” histories, 
new and experienced users alike can build intuition about the importance of 
different decisions during the modeling process (Fig. 2).

Next, we present examples from published data sets and discuss decision-​
making strategies for (1) collecting and modeling a vertical profile of data; 
(2) modeling multiple thermochronometers together; and (3) modeling data 
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Figure 1. Graphic reproduced from Murray et al. (2022) showing the trends in 
citations of HeFTy (Ketcham, 2005, green line) and QTQt (Gallagher, 2012, orange 
line) thermal history modeling applications from 2005 to 2020. Purple line shows a 
trend in the sum of citations of both packages. Data sourced from Google Scholar 
(October 2021).
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Figure 2. Flow chart showing the numerous decisions users are required to make during the process of modeling thermochronometric data. MCMC—Markov-​Chain Monte Carlo algorithm.
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sets that include complex AHe and AFT data. We also present an iterative 
“Path Structure Approach” that elaborates on how to use each of the QTQt 
outputs to evaluate a variety of possible thermal histories produced by one 
set of data. These examples are not intended to expand on or revise interpre-
tations made in the initial publications; instead, they illustrate opportunities 
and limitations of modeling with real data by addressing the practical chal-
lenges that face thermochronologists. This explicit discussion of modeling and 
interpretation strategies offers a resource and framework to help anticipate 
and evaluate the impact of sampling, data collection, and model design on 
thermal history modeling.

■■ BACKGROUND INFORMATION

The following section provides some background information on the meth-
odology, philosophy, and terminology underpinning QTQt thermal history 
modeling. However, we do not provide a detailed description of the mathemat-
ical and statistical underpinnings of the program. Instead, we direct readers to 
Gallagher et al. (2009) and Gallagher (2012) and references therein for details 
on the transdimensional Markov-​Chain Monte Carlo (MCMC) algorithm and 
Bayesian approach to thermal history modeling. Furthermore, we refer read-
ers to Vermeesch and Tian (2014, 2018) and Gallagher and Ketcham (2018, 
2020) where these concepts (and those applicable to the HeFTy program) are 
reiterated and thoroughly discussed.

At the heart of QTQt is Bayes theorem:

	 p(m|d)∝p(d|m) p(m),

which states that the probability of obtaining a set of model parameters given 
the data (p(m|d)) is proportional to the probability of obtaining the data given 
the underlying model parameters (p(d|m)) multiplied by the prior probability of 
the model parameters (p(m)). The term p(m|d) is referred to as the “posterior” 
probability and is a product of multiplying the “likelihood” function p(d|m), 
which describes how well the model fits the data, by the “prior”, which is a 
measure of what we know (or think we know) before we consider the data. The 
prior, likelihood, and posterior each take the form of probability distribution 
(Gallagher et al., 2009). In short, our prior knowledge of the model is updated by 
the likelihood of fitting the data given the model parameters and transformed 
into the posterior, which is what we have learned about our model from the 
data (Gallagher, 2012). In QTQt, the inverse modeling function constructs the 
posterior probability distributions for all model parameters conditional on the 
data provided (Gallagher, 2012).

In the case of thermal history modeling, the “prior” information comprises 
all of the knowledge about the samples that is not the measured data itself, 
including (1) a broad constraint on time and temperature in which the thermal 
history will be sampled; (2) additional geological and thermal history con-
straints; (3) if multiple samples are being modeled together, the temperature 

difference (i.e., offset) between samples in a profile that arises from their ver-
tical separation, and, if desired, a geothermal gradient that varies over time; 
(4) allowance for reheating or not; and (5) kinetics parameters related to He 
diffusion and/or fission or damage annealing (Fig. 2). QTQt employs a revers-
ible jump, transdimensional MCMC algorithm to sample the prior probability 
distributions of the model parameters and propose a t-T path.

Importantly, the transdimensional MCMC algorithm in QTQt permits the 
number of model parameters to be treated as an unknown, and therefore 
the data determine the complexity of the t-T paths that QTQt proposes. The 
simplest thermal history consists of two points in time-​temperature space 
(t-T points) with a constant cooling rate between them. Increasingly complex 
thermal histories have more and more t-T points, which mark a potential 
change in the cooling/heating rate (i.e., an inflection point in the t-T path). 
Given a proposed t-T path, QTQt calculates a likelihood probability (how well 
the thermal history fits the data) and a posterior probability (a product of the 
likelihood and the prior). The MCMC algorithm then continues on a random 
walk of the model space by proposing a new t-T path that is conditional on the 
previous one (i.e., a “learning” search algorithm) by: moving a point in time 
or temperature, changing the value of temperature offset for profile samples, 
adding (“birth”) or removing (“death”) a time-​temperature point, sampling a 
kinetic parameter for an individual sample, or resampling the observed data 
value (Gallagher, 2012). Proposed t-T paths are either accepted or rejected using 
an acceptance criterion outlined in Gallagher (2012). A natural consequence of 
the Bayesian transdimensional MCMC approach used by QTQt is that simpler 
t-T paths (i.e., fewer t-T points) are preferred to complex t-T paths (i.e., more 
t-T points) if both models fit the data equally well (Gallagher and Ketcham, 
2018). QTQt’s inherent preference for the simplest t-T paths that fit the data 
is perhaps the most important difference between QTQt and HeFTy model 
results. QTQt’s MCMC algorithm is run for several thousands to millions of 
iterations to sample the model space and produce a collection of acceptable 
thermal history models (Gallagher, 2012).

■■ GENERAL RULES FOR ENGAGEMENT WITH QTQt

After completing the hard work of data acquisition and reduction, the first 
question a thermal history modeler may ask is: Which thermal history model-
ing software should I use? There are multiple numerical approaches adopted 
by different research groups, but as noted above, for many HeFTy and QTQt 
are the most accessible. The user should explore the functionality of QTQt 
and HeFTy and determine whether one or the other best suits their needs. 
QTQt has many strengths, including, but not limited to, the ability to model 
samples in a vertical and/or borehole profile (as a forward or inverse model) 
by defining a thermal offset between samples, to incorporate a large number 
of single grain U-Th/He ages with control over diffusion parameters, and to 
resample observed data and uncertainties such that outlier or enigmatic data 
do not have a large influence over the solution.
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Ongoing discussions comparing the QTQt and HeFTy programs may lead 
some to conclude that there is a rigid dichotomy between these two tools, 
but this is not the case. For example, Vermeesch and Tian (2014, 2018) con-
cluded that for a complex data set, HeFTy may “break” and fail to yield any 
acceptable solutions, whereas QTQt will always yield a solution—one that can 
appear to be well resolved but actually not fit the data well. In response to 
these assertions, Gallagher and Ketcham (2018, 2020) highlighted that despite 
substantial differences in their theoretical approaches, both modeling tools, 
when used with careful handling of input data and robust understanding of 
software functionality, will yield comparable results. When a user is faced with 
a HeFTy model that fails to yield any good or acceptable fits to the observed 
data or a QTQt model that yields a well-​resolved thermal history that does not 
reproduce the data, in both cases this is an indication that the model design, 
assumptions, and input data should be re-​assessed. Importantly, in such cases, 
the user has still learned something useful through the modeling process. 
Thus, it is crucial for users to always compare the model predictions with 
the measured data. Users are able to extract model predictions and employ 
statistical techniques to quantify the degree of data fit to the observations; 
however, QTQt provides several graphical outputs to provide an accessible 
representation of how well the observed data are predicted by the model 
(Gallagher, 2016). This manuscript is designed to aid modelers in developing 
a path forward in these situations in QTQt. In concert with Murray et al. (2022), 
here we reiterate the conclusions of Gallagher and Ketcham (2018, 2020) and 
describe specific functionalities and modeling strategies for QTQt, so that 
modelers are equipped to choose the best approach for their own data sets.

The next decision in the modeling process is whether to use a “forward” 
or “inverse” modeling approach, or an iterative combination of the two (for 
example, our “Path Structure Approach”). Forward thermal history modeling 
generates predicted thermochronometric data for manually defined t-T paths. 
Predictions from forward models can be compared to observed data, used 
to support or reject a particular hypothesis, or be used to develop a future 
sampling strategy. For example, forward modeling may direct a researcher to 
use a thermochronometric system that is sensitive to a particular magnitude 
and rate of cooling or demonstrate that a vertical sampling campaign will be 
effective for resolving a hypothetical thermal history. Forward modeling exer-
cises will produce identical results regardless of the program used; however, 
we provide examples of the forward modeling workflow specific to QTQt in 
the next section on evaluating thermochronometric behaviors using forward 
models and synthetic data and in the tutorial in the Supplemental Material 
(see footnote 1) (Fig. 2).

Here we outline the decision-​making process one may be faced with when 
embarking on a geological investigation involving thermal history modeling. 
The first step is an assessment of the following questions: (1) What geologic 
question(s) are you asking?; (2) what data do you have?; and (3) what other 
geologic constraint(s) do you have? (Fig. 2). This may be clear from the out-
set; for example: (1) When was a sedimentary basin formed, and what was its 
post-​burial exhumation history; (2) high-​quality, state-​of-​the-​art AFT and AHe 

data from a borehole; (3) tight stratigraphic constraints for the sedimentary 
units sampled. However, it may be necessary to expand your initial inquiry 
to address complex related questions such as: Are there existing competing 
hypotheses to be tested? What other data might you need to address the scien-
tific question (e.g., additional thermochronometers)? Are there quality control 
concerns on your data (e.g., legacy AFT data lacking compositional proxies or 
standardized etching techniques, “over-​dispersed” AHe ages)? What is your 
confidence in each geologic constraint? All of these considerations inform the 
prior knowledge as we’ve described, and, in different ways, can be built into 
the modeling process as we will illustrate.

■■ EVALUATING THERMOCHRONOMETRIC BEHAVIORS USING 
FORWARD MODELS AND SYNTHETIC DATA

We illustrate the utility of forward thermal history modeling by using six 
t-T paths, representative of common geologic settings, to create synthetic 
AFT and AHe data sets. These thermal histories are modified from histories 
first used by Wolf et al. (1998) to highlight the non-​unique nature of AHe 
ages. These paths are specifically designed to explore the temperature ranges 
over which the AHe system is most sensitive (30–90 °C) and investigate the 
consequences of partial-​retention behavior in that system. However, we also 
interrogate predicted AFT behavior and recognize that alternative thermal his-
tories could easily be designed to illustrate the non-​unique nature of different 
thermochronologic data sets.

The original demonstration, from Wolf et al. (1998), presents five t-T paths 
that all predict a 40 Ma AHe age, assuming a constant grain size (60 µm) and 
the diffusion kinetics of Wolf et al. (1996). Here, we use those same t-T paths 
from Wolf et al. (1998), plus one additional Path 6, but apply the Flowers et al. 
(2009) radiation damage accumulation and annealing model (RDAAM) during 
forward and inverse modeling, and as such, we do not obtain a 40 Ma age 
for a 60 µm grain for all six thermal histories (as the AHe age will be different 
depending on the eU concentration of the grain). Murray et al. (2022) present 
minor adjustments to the t-T paths such that they each produce a 40 Ma age 
for a Durango-​like 60 ppm [eU] apatite with a grain size of 60 µm using the 
RDAAM (see table 1 in Murray et al., 2022).

Forward Modeling Data Predictions

The AFT and AHe data predicted by our six thermal histories are shown in 
Figure 3 and summarized in Table S1 (footnote 1). Because each history starts 
at 100 Ma, the apatite grains effectively “crystallized” at that time and have 
no prior history. Predictions of AFT data are made assuming a Dpar of 2.05 
μm. We predicted AHe ages for a range of eU concentrations (1–300 ppm) for 
grain radii of 60, 90, and 120 μm and present them without an alpha-​ejection 
correction because uncorrected (measured) AHe ages are used as the input 
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Figure 3. (A) Six thermal history paths used to generate synthetic apatite fission-​track and apatite (U-Th-Sm)/He (AFT and AHe) data. Input thermal history paths are constructed by 
specifying and connecting a number of points in time-​temperature space. (B) Predicted AFT ages plotted against predicted mean track length for each model. (C) Predicted (uncorrected) 
AHe ages against [eU] over the range of 1–300 ppm. Different symbols are used to indicate different apatite grain sizes (circle—60 μm; square—90 μm; and triangle—120 μm) for each 
model. (D) AFT track-​length distributions for each model. Specific details on these inputs and outputs are described in Table S1 (see text footnote 1).
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ages in QTQt (see Table S1 for corrected ages) and the alpha ejection calcu-
lation is performed during the thermal history run.

We observe that for Path 1 and Path 6, the AFT age is ca. 40 Ma, which 
corresponds to the timing of rapid cooling through the PAZ. Paths 2, 3, 4, and 
5 all predict older AFT ages (59–86 Ma), which do not obviously relate to a 
discrete thermal “event” (e.g., change in rate of heating or cooling) in the 
corresponding history. This is because these samples have spent a significant 
portion of their thermal history in the PAZ, where variable amounts of track 
annealing have occurred (Fig. 3). The predictions for Paths 3, 4, and 5 high-
light the challenges with interpreting AFT data when events in the thermal 
history occur at temperatures close to the AFT thermochronometer’s lower 
limit of temperature sensitivity (i.e., 50–60 °C). We observe that the AFT age 
and MTL for the Path 3, 4, and 5 models are almost indistinguishable even 
without the additional uncertainty typical of “real-​world” data. Although there 
are some subtle differences in the track length distribution (TLD) (e.g., slightly 
left-​skewed TLD for Path 3, and a slightly narrower TLD for Path 5), resolving 
these features in a real data set would be challenging.

In contrast, the predicted AHe ages produced by these six thermal histories 
are more variable (Fig. 3C), as expected given the temperatures experienced 
by these grains and the radiation damage kinetics model we chose. The AHe 
ages for Paths 1 and 6 are approximately equal to the timing of rapid cooling, 
regardless of the grain size or eU, due to the limited time spent in the PRZ. 
Slowing the cooling rate and increasing the amount of time the grains spend 
in the PRZ, as shown by Path 2, creates more variability among the single-​
grain ages, primarily controlled by eU, but still yields a comparable mean 
AHe age to Path 1. Paths 3, 4 and 5 spend even more time at PRZ conditions 
and predict older mean AHe ages and, importantly, significantly greater age 
variability among the single-​grain ages than Paths 1, 2, and 6 (Fig. 3C). The 
age-​eU trends predicted from Paths 3 and 4 are very similar, with subtle differ-
ences due to differences in cooling rate at 100–80 Ma and 20–0 Ma. The AHe 
data predicted by Path 5 are also highly variable. The moderate and low eU 
grains are young because the radiation damage model predicts that they lose 
He during the reheating to 60 °C. In contrast, the high-​eU grains (>100 ppm) 
are more damaged than the low-​eU grains that experienced this same history, 
and thus retain more He and have older ages. These older grains record the 
initial rapid cooling through the PRZ at 100 Ma and are not sensitive to the later 
reheating. At low to moderate eU values (10–50 ppm), the AHe age variability 
controlled by grain size is also more significant for Path 5 than for Paths 3 and 4.

Summary: Effect of Thermal History, Radiation Damage, and Grain Size 
on Predicted Apatite Thermochronometry Data

The forward model exercises detailed above highlight the well-​established 
effects that radiation damage and grain size have on AHe ages and show that 
thermal events occurring at ~60 °C will result in only minor differences in the 
predicted AFT data. Simple cooling histories, such as fast cooling through the 

PRZ and PAZ (Paths 1 and 6), produce nearly identical AHe age trends regard-
less of grain size or eU concentration, and the AFT TLD is symmetric with long 
MTLs (>15 μm). The lack of AHe age variability over a large range of grain size 
and eU as well as the AFT track-​length data in this case are useful qualitative 
indicators of the relatively simple scenario of rapid cooling. More complex 
cooling histories, such as those with protracted cooling (Path 2), moderate 
reheating (Path 5), or extended time spent at temperatures where there is 
partial loss of the daughter product (Paths 3, 4, and 5) produce more variable 
AHe ages, skewed or broad TLDs, and shorter MTLs. Our examples reiterate 
how the degree to which AHe age variability is influenced by the eU and 
grain size (e.g., Reiners and Farley, 2001; Flowers et al., 2009; Gautheron et al., 
2009). They demonstrate that eU is typically the dominant control of AHe age 
variability, and its effects are most pronounced for samples that experienced 
long durations in the PRZ. However, at very high and very low eU, He ages 
are more consistent for a particular grain size, and grain size variations are a 
bigger control of age variability. In “real-​world” cases, additional age variabil-
ity can be introduced from other sources such as intracrystalline zonation, He 
implantation, inclusions, and grain fragmentation (see Wildman et al., 2016, 
and Flowers et al., 2022a, for summaries). In our idealized case, assuming the 
Flowers et al. (2009) RDAAM model is a suitable numerical model to simulate 
diffusion in radiation-​damaged apatite, strong correlations exist between the 
AHe age and the damage for which eU is a proxy, making interpretations 
based on age-​eU trends and extracting thermal history information feasible 
(Flowers and Kelley, 2011). However, radiation damage in apatite and models 
simulating the accumulation and annealing of defects, and the impact these 
defects have on He diffusion, remain under investigation (e.g., Gautheron et 
al., 2009, 2013; Djimbi et al., 2015; Gerin et al., 2017; Willett et al., 2017).

■■ USING SYNTHETIC DATA TO EXEMPLIFY SENSITIVITY TESTING 
WITH INVERSE MODELS

Our examples above show that a single t-T path proposed as a forward 
model will produce an AFT and AHe data set specific to that path. However, 
the reverse is not true; it is not possible to recover one unique t-T path from 
an AFT and/or AHe data set. Multiple histories may produce the same data, 
especially “real-​world” data sets with uncertainties. Inverse modeling offers 
an approach for addressing the significance of this non-​uniqueness, because 
it is a process where thousands to millions of t-T paths are sampled, and their 
fit to the data assessed with the aim of finding those paths that best fit, or at 
least are consistent with, the observed data.

The inverse modeling approach in QTQt utilizes the transdimensional 
MCMC method to search the model space and infer acceptable values for the 
model parameters from the data. In practice, QTQt does this by proposing a 
large number of thermal history paths, assessing their fit to the observed data, 
and creating an ensemble of acceptable paths. The user creates a data file 
input containing the observed data and a specification of the kinetics models 
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used to simulate annealing and/or diffusion (Fig. 2). The user then defines 
their prior information: a broad time and temperature box, the present-​day 
temperature, any additional geological information in the form of constraint 
boxes, and the temperature offset between samples if modeling a vertical 
profile (Fig. 2). Note that QTQt, unlike HeFTy, can only accommodate up to 
five geologic constraint boxes, which reflects the substantial philosophical 
difference between these programs (Ketcham, 2005; Gallagher and Ketcham, 
2018, 2020). In QTQt, the thermochronologic data, as input by the user, define 
the complexity of the thermal history model result, and therefore the user is 
encouraged to only use a few well-​defined geologic constraints.

After designing an inverse model, users are advised to perform several 
short modeling runs (tens of thousands of iterations) to assess the perfor-
mance of the MCMC algorithm and to monitor whether it has converged. 
One important evaluation is of the acceptance rates for the specified proposal 
time and temperature moves, which is the scale of the distribution for each 
model parameter from which a point can be sampled in each iteration. The 
proposal moves should be set such that the acceptance rate for that parameter 
is ~20%–60%, and the rate of new t-T points being added (“birth”) is similar to 
the number being removed (“death”). Increasing or decreasing the value of 
the proposal move will tend to have an inverse effect on the acceptance rate. 
Additionally, the user should assess the stability of the log likelihood (i.e., data 
fit) function, posterior probability log, and the number of time-​temperature 
points as a function of iteration (e.g., likelihood chains and acceptance rates; 
see tutorial in Supplemental Material for examples). There should be no trends 
in the chain with values changing for most iterations (Gallagher, 2012; see 
tutorial, footnote 1). Once the chain is stable, longer runs can then be com-
pleted to obtain the ensemble of accepted thermal histories that construct 
the posterior distribution. We encourage users to report in publications the 
proposal moves and acceptance rates for the MCMC parameters and that the 
MCMC has converged (Tables S2–S7). We demonstrate how users can prac-
tically engage with the inverse modeling set-​up and this MCMC tuning, and 
how engagement with the inverse modeling set-​up can influence the output 
models, in several examples below and in the tutorial. 

Once all of the above decisions are made for the model inputs, the inver-
sion can be run. Outputs from an inversion include predicted data, thermal 
history paths, and the MCMC parameters including time and temperature 
acceptance rates and proposal “birth” and “death” rates. The predicted data 
include uncorrected He ages, which can be displayed in a plot against the 
uncorrected input measured ages such that a perfect fit of the data would fall 
on a 1:1 line. Predictions can also be plotted in elevation space, which is useful 
when modeling samples collected in a vertical profile. Predicted FT lengths 
and track-​length distributions are plotted as a histogram.

After completing an inverse model, QTQt generates a series of outputs that 
convey the performance of the MCMC sampling of model parameters (see 
tutorial, footnote 1), thermal history models, and data predictions. Specific 
thermal histories that can be examined and are discussed here include the 
maximum likelihood, maximum posterior, and expected thermal history. The 

maximum likelihood (MaxLike) model is the t-T path that fits the data the best. 
However, the MaxLike model often fits the data using high degrees of complex-
ity (i.e., large number of t-T points), which may be geologically unrealistic. In 
contrast, the maximum posterior (MaxPost) model is essentially the simplest 
t-T history that fits the data. It has the maximum posterior probability, where 
the posterior probability is proportional to the likelihood multiplied by the prior. 
As a result, even if data were truly produced by a complex thermal history, if 
the data are not suitably informative, or the underlying thermochronometric 
kinetics models are not correct, the MaxPost model may not resolve the com-
plexity of the true thermal history. The expected thermal history (ExTH) path 
is a weighted-​mean model where the weighting is provided by the posterior 
probability for each model. This ensemble reconstructs the posterior prob-
ability distribution of the accepted thermal histories and is presented along 
with 95% credible intervals (Gallagher, 2012). Finally, a color map showing 
the “marginal posterior distribution” can also be visualized that shows the 
relative probability of a sample cooling through a box of size 1 °C and 1 m.y., 
or a time interval defined by dividing the model time range by 100; the mar-
ginal posterior distribution is conditional on the temperature of the thermal 
histories at all other times (Gallagher and Ketcham, 2018).

If the MaxLike, MaxPost, and ExTH outputs from a model run are similar, 
and all reproduce the data well, then the thermal history can be considered 
well constrained. The ExTH should reflect the true solution where it is well 
resolved with tight credible intervals. However, because the ExTH is a weighted-​
mean model, parts of the ExTH path could be the product of individual paths 
with very different behaviors (see our “Path Structure Approach” and the 

“Path Family Approach” from Murray et al., 2022). For example, there may 
be thermal histories that predict reheating over a given interval and others 
that predict cooling over the same interval, and therefore the ExTH suggests 
a scenario in between. In this case, the MaxLike and MaxPost models may be 
very different but still predict the data very well, while the averaging of the 
ExTH produces another different thermal history that does not fit the data as 
well. For all thermal histories, it is important to present and assess the data 
fit, either visually or with appropriate statistical tests and then evaluate the 
significance of the fit or lack thereof.

In many studies, there is a desire to arrive at a single thermal history solu-
tion, and the ExTH is commonly the appropriate choice because it reflects an 
objective sampling of all model parameters, penalizes complexity that is not 
resolved by the data, and can provide information on the uncertainty of the 
model in the form of 95% credible intervals. However, given the nature of the 
ExTH, the other model outputs need to be examined closely, and, in many 
cases, additional inverse or forward modeling is required to identify and under-
stand the “preferred” solution. We demonstrate a strategy for evaluating model 
outputs and selecting a “preferred” solution, the “Path Structure Approach,” 
through a worked example at the end of this contribution.

In this work, most of our interpretations rely on the ExTH output, although 
we sometimes refer to the MaxLike or MaxPost to investigate what might 
be controlling the structure of the ExTH. With all of the user decisions made 
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when interacting and engaging in the modeling process, it is critical to record 
and report the decisions made and the reasoning behind those decisions. We 
encourage users to refer to the previously published templates and the ver-
sions we provide here for clear reporting (Flowers et al., 2015; Wildman et al., 
2019b; Tables S3–S7 of this contribution, footnote 1).

One approach for assessing how model design choices impact an inverse 
model result is to generate synthetic data using a forward model and then 
invert that data to investigate how effectively the original parameters can be 
recovered. Next, we illustrate how both the non-​unique nature of cooling 
ages and the choices made when designing inverse models control our abil-
ity to recover the six “true” t-T histories modeled in a forward sense in the 
previous section.

Illustrating the Non-​Unique Nature of Single-​Grain He Data

An inversion of a single-​apatite He age illustrates how QTQt handles the 
non-​unique nature of thermochronometric ages. We use a single apatite grain 
with a 60 μm radius, an eU concentration of 60 ppm, and a corrected He age 
of 40 Ma, which Wolf et al. (1998) demonstrated is produced by a wide range 
of thermal histories, including Paths 1–6 here (Fig. 4). The resultant color 
map (Fig. 4A) shows the possibility that any of the six cooling paths, and 
any number of other cooling paths, could produce the measured age for that 
specific grain. However, given the single data input, QTQt converged on the 
simplest, Path-​2-​like solution (Fig. 4). Indeed, a casual assessment of the color 
map (Fig. 4A) might lead one to think that a Path-​2-​like thermal history offers 
the best fit to a single 40 Ma age, and thus QTQt has constrained a specific 
thermal history from this single AHe age and excluded the possibility of more 
complex solutions fitting the data. However, this is not the case. A careful 
look at the percent likelihood of individual cooling paths shows that more 
complex cooling histories fit the single 40 Ma age equally well (Figs. 4C and 
4D), although such histories were not extensively explored because QTQt 
preferentially converged on the simplest solution. For example, several of 
the MaxLike models show a percent likelihood >80% for thermal paths that 
resemble the true Paths 1–6 (Fig. 4C). This is why, to better constrain thermal 
histories, data sets should typically include more information than a single 
thermochronometric age, such as ages from multiple independent chronom-
eters or additional thermal history proxies such as fission-​track lengths or the 
variability in multi-​aliquot AHe or zircon (U-Th-Sm)/He (ZHe) ages caused by 
grain size or radiation damage.

Comparing these results with those produced by an inversion of a single 
40 Ma AHe age in HeFTy (Fig. 4E; Murray et al., 2022) illustrates several fun-
damental differences between the way these programs search t-T space and 
present inversion results to the user. In contrast to QTQt’s MCMC algorithm, 
HeFTy employs a non-​learning random Monte Carlo search of t-T space; it pres-
ents results as either acceptable- or good-​fit paths with no colored weighting 
such as the relative probability color maps produced by QTQt. As a result, the 

wide range of acceptable- and good-​fit paths are more apparent. Upon close 
inspection of QTQt’s color map (Fig. 4A) and MaxLike plots (Figs. 4C and 4D), 
we see that the results from the two programs are, in fact, quite similar. The 
QTQt ExTH color map covers the same t-T ranges as the HeFTy acceptable 
field, and the QTQt paths with higher-​percent likelihood represent the same 
possibilities seen in the HeFTy good-​fit paths (Fig. 4).

The difference between the QTQt inversion results (Figs. 4A–4D) and HeFTy 
inversion results (Fig. 4E) directly reflects the philosophical differences in 
how these programs handle the non-​unique nature of cooling ages. In HeFTy, 
a single cooling age that is fit equally well by a wide range of simple and 
complex thermal histories will produce an inverse model that easily finds a 
wide range of good- and acceptable-​fit t-T paths (see also other examples in 
Murray et al., 2022). In contrast, QTQt penalizes complexity when the data 
inputs are simple. As a result, it converges upon the simplest solution that 
fits the data to the apparent exclusion of more complex histories that fit the 
data equally well. One approach is not generally better than the other; they are 
simply different. Importantly, these differences prompt the user to conceive 
of modeling questions, model design, and how to make appropriate geologic 
interpretations of inversion results in different ways. For more comparisons 
between these programs, see Fox and Carter (2020), Flowers et al. (2022b), 
and the commentaries related to Flowers et al. (2015): Vermeesch and Tian 
(2014); Flowers et al. (2016); Gallagher et al. (2016); Gallagher and Ketcham 
(2018, 2020); and Vermeesch and Tian (2018, 2019).

Model Set-​Up Decision Making: Inputs and Outputs

Using the synthetic data generated from the forward models of thermal 
history Paths 1–6 as “perfect” input data for inverse models, we explore how 
decision making during the model design process controls the inverse ther-
mal history modeling outputs. First, we jointly invert the AFT and AHe data 
and run all inverse thermal histories using QTQt’s default t-T prior informa-
tion (time = oldest observed age ± oldest observed age; temperature = 70 
± 70 °C) and an initial constraint that ensures that each model starts under 
the same conditions and that all thermochronometers have a zero age at the 
beginning of the model (t = 200 ± 5 Ma, T = 200 ± 5 °C). This initial constraint 
ensures that the thermochronometers are initially completely reset for each 
model and has no geological significance; the effect of the initial constraint 
is discussed more in the Effect of an Initial Constraint section below. We add 
no other constraint boxes to guide QTQt to attempt paths that start at 100 Ma. 
This exercise gives us (1) a baseline for how well QTQt inverse models can 
reproduce known cooling paths given “perfect” data, an important reference 
point for the sensitivity tests we outline below, and (2) an opportunity to dis-
cuss the differences in the various outputs that QTQt produces and how they 
may be useful for interpretation of different features of the thermal histories.

In the following subsections, we iterate between designing, running, and 
interpreting different inverse thermal history models to explicitly test the 

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/19/2/493/5804747/ges02528.1.pdf
by University of Glasgow user
on 29 March 2023

http://geosphere.gsapubs.org


502Abbey et al.  |  Thermal history modeling techniques: QTQtGEOSPHERE  |  Volume 19  |  Number 2

Research Paper

Te
m

pe
ra

tu
re

 (°
C)

0

50

100

150

200

Time (Ma)
020406080100

Relative Probability

Observed AHe Ages (Ma)
3228 444036

Pr
ed

ic
te

d 
A

H
e 

Ag
es

 (M
a)

24

32

28

44

40

36

24

Path 1
Path 2
Path 3
Path 4
Path 5
Path 6

Corrected Ages
Uncorrected Ages

Te
m

pe
ra

tu
re

 (°
C)

0

50

100

150

200

Time (Ma)
020406080100

Likelihood %

0

20

40

60

80

100

Te
m

pe
ra

tu
re

 (°
C)

0

50

100

150

200

Time (Ma)
020406080100

Posterior %

0

20

40

60

80

100

A. Color map produced from modeling a single 40 Ma crystal

C. Percent likelyhood of Max. Like. thermal histories 
produced from modeling a single 40 Ma crystal

D. Percent likelyhood of Max. Post. thermal histories 
produced from modeling a single 40 Ma crystal

B. Data predictions from modeling a single 40 Ma crystal

020406080100
time (Ma)

0

50

100

150

200

Box 1 Box 2

Te
m

pe
ra

tu
re

 (°
C) ‘true’ tT paths

1
2
3

4
5
6

good-fit paths
acceptible-fit field
model constraint box

tT plots

E. HeFTy thermal histories produced from inverse modeling a single 40 Ma crystal

Figure 4. (A) Expected t-​T produced from 
inverting a single apatite grain with a 60 
μm radius, an eU concentration of 60 
ppm, and an age of 40 Ma. Six paths used 
for forward modeling and synthetic data 
production overlaid on a relative prob-
ability color map. (B) Data predictions 
for the expected thermal history com-
pared with input data (observation); the 
diagonal line is 1:1 correlation between 
predicted and observed, and the error 
bars are 2σ. Note, we use the Flowers 
et al. (2009) radiation damage accumu-
lation and annealing model (RDAAM), 
and the ages reported here show both 
the uncorrected and corrected ages. 
(C) Representative population of ac-
cepted thermal history paths, colored 
by their likelihood probability in per-
cent. (D) Representative population of 
accepted thermal history paths, colored 
by their posterior probability in percent. 
(E) Results for a single 40 Ma AHe age 
modeled in HeFTy (after Murray et al., 
2022) demonstrate key differences in the 
modeling philosophy and model result 
visualization between these two com-
monly used programs.
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impact of the following choices: using one or multiple chronometers as data, 
changing the size of the time-​temperature range prior, changing the time-​
temperature position of an initial constraint box, and changing the AHe age 
uncertainty.

In our examples, we use the Ketcham et al. (2007) annealing model to 
simulate fission track production and annealing. We use Dpar as the compo-
sitional proxy and assign a typical Durango value of 2.05 ± 0.20 µm (Sobel 
and Seward, 2010) and determine the initial track length for each proposed 
model based on a composition sampled from this Dpar range. We use the 
synthetic Ns and Ni (number of spontaneous and induced tracks, respec-
tively), data for 20 single grains, and 100 c-​axis projected track lengths 
generated during the forward modeling phase as the raw input data (Table S2, 
see footnote 1).

To simulate He diffusion from apatite crystals, we use the Flowers et al. 
(2009) RDAAM. Although in our forward modeling exercise, we generated 
many AHe ages across an eU range of 1–300 ppm for three different grain sizes, 
in this exercise we only use six synthetic single-​apatite grains that all have the 
same spherical equivalent radius of 60 µm but different eU values (eU values 
= 10, 25, 50, 75, 150, and 300 ppm). For a discussion on how to model more, or 
fewer, grains with different degrees of age variability linked to grain geometry 
and radiation damage, see Brown et al. (2013). For each AHe age, we assign 
an uncertainty of 10% to reflect analytical uncertainty, typical reproducibility 
of standards, and uncertainty due to our incomplete understanding of the 
causes of AHe age variability. The specified model inputs described here are 
used in the following exercise to resolve the “true” thermal histories (Fig. 5) 
and reported in our template found in Table S2 (see footnote 1).

Resolving “True” Thermal Histories

Visually, the inverse model outputs show good recovery for some of the 
“true” cooling paths (e.g., Paths 1, 2, 5, and 6) whereas others (Paths 3 and 4) 
less clearly recover the true path (Fig. 5). For all paths, the parts of the model 
results at temperatures above 120 °C have no real significance because the 
apatite chronometers are only sensitive to temperatures between 30–120 °C; 
so we focus our discussion on the parts of the paths <120 °C. The inverse mod-
eling results for Paths 1, 2, and 6 yield ExTH, MaxLike, and MaxPost models 
that all reproduce the “true” paths well (Fig. 5). The 95% credible intervals for 
these three cooling scenarios are narrow along the entire t-T space. For each 
of these three paths, the three output models predict ages and track lengths 
that are nearly indistinguishable from one another. Additionally, in Paths 1 and 
6, we observe that some thermal histories imply cooling and reheating prior 
to the rapid cooling event at ca. 40 Ma. However, although these paths may 
result in a reasonable data fit, the number of paths that do this is very low and 
as such can be considered to have a very low relative posterior probability 
(as indicated by their blue color on the color map), and they lie outside the 
95% credible intervals of the expected thermal history (Figs. 5A and 5F). The 

monotonic cooling inferred in Path 2 is extremely tightly constrained and is 
inferred from almost all proposed models (Fig. 5B). This can be attributed to 
the fact that the monotonic cooling is a very simple t-T path, which in this 
case, fits the data extremely well, and so there is no need to introduce any 
additional complexity.

Paths 3, 4, and 5 show notable differences between the MaxLike, MaxPost, 
and ExTH t-T paths. Additionally, these paths show broader 95% confidence 
intervals where acceptable predictions vary greatly and incorporate the most 
structure (i.e., inflection points) in output paths. The MaxLike thermal history 
captures the true shape of Paths 3 and 4 the best, both visually and in the 
predicted AHe and AFT ages (Figs. 5C and 5D). The MaxPost paths for Paths 3 
and 4 are simpler (have fewer t-T points) than the MaxLike model but still have 
structure (i.e., inflection points in the path) inconsistent with the true path. The 
ExTH model incorporates the structure inferred by each individual model but 
is smoothed due to the weighting toward the posterior (i.e., simpler) models. 
In contrast, for Path 5, the MaxPost model visually fits the true history better, 
but the age predictions are virtually indistinguishable from the more structur-
ally complex MaxLike model predictions (Fig. 5E). The ExTH model for Path 5 
smooths the structure of the cooling paths so that t-T changes are less abrupt.

A major challenge when assessing inverse thermal history models is deter-
mining which features of the model are justifiable for geological interpretations 
and how these features should be interpreted. In this example, we are able 
to compare the model results with a known “true” thermal history. In a real 
data set, we may compare and assess results with geological hypotheses. 
In Paths 3 and 4, we see that the 95% credible intervals, between 100 and 
30 Ma, are broad, and the ExTH path shows some minor cooling and heating. 
Given the uncertainty on the model over this timeframe, and the ambiguity 
between the MaxLike and MaxPost models, it is not advisable to interpret these 
minor temperature deviations with any geological significance unless justified 
by some other data, observation, or hypothesis. The 95% credible intervals 
become narrow and tightly constrain linear cooling from ca. 30–25 Ma until 
0 Ma through temperatures of 10–60 °C. For Path 4, this inference matches the 
known t-T path, but for Path 3 the ExTH infers that cooling starts earlier than 
the true history and does not capture the rapid cooling. If the true path was not 
known, there would be no way of identifying that the Path 4 ExTH model was 
consistent with the true history while the Path 3 ExTH model was not without 
additional, independent geologic information. In fact, the true timing for the 
onset of the final cooling event in the Path 3 model does fall within the 95% 
credible intervals and is recovered well by the MaxLike model. This suggests 
that the thermochronologic data set is consistent with cooling at this time; 
however, this solution is non-​unique given the input data, the uncertainties, 
and the preference for the Bayesian approach of QTQt to find simpler solutions 
(Gallagher, 2012). Geologic interpretations should reflect these uncertainties.

These simple examples demonstrate how resolving near-​surface, low-​
temperature, thermal events such as those in Paths 3, 4, and 5 with apatite 
chronometers from a single outcrop sample is challenging and may not be 
possible. In such a circumstance, it is therefore up to the user to decide which 
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Figure 5. Model results from inverting the synthetic data generated from each of the six cooling paths (includes apatite fission-​track [AFT] ages and 
lengths for each sample and six apatite (U-Th-Sm)/He (AHe) ages for each sample with radius of 60 µm and eU values = 10, 25, 50, 75, 150, and 300 
ppm; Table S2, text footnote 1). Left: relative probability color map with the ExTH overlain. Middle: comparison between the ExTH (green), MaxLike 
(orange), and MaxPost (purple) t-​T paths and the original “true” input paths (dashed gray lines). Right: data predictions for the ExTH, MaxLike, and 
MaxPost models. Uncorrected AHe ages (triangles), central AFT ages (circles), and mean track-​length predictions (histogram and fitted distribution).
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model (e.g., ExTH, MaxLike, MaxPost) they prefer to interpret, to justify this 
choice using the observed data and coherence with available independent 
geological information, and to discuss the limitations of the inversion result 
and how additional observations or data could improve the result. In the 
Supplemental Material (footnote 1), we reproduce Path 3 very well with more 
information that is rarely attainable in a real-​life scenario, such as a very high 
number of AHe ages covering a larger range of grain sizes and eU (and there-
fore temperature sensitivities), perfect predictive models for He diffusion and 
fission-​track annealing, and adding the requirement that the sample experi-
ences no reheating during its geological history (Fig. S1, footnote 1).

Effect of Using One Thermochronometer versus Multiple 
Chronometers

The commonly used thermochronometric systems are sensitive over dif-
ferent and sometimes overlapping temperature ranges. Therefore, applying 
multiple dating techniques on a single sample can provide more information 
on the sample’s thermal history than using any one system in isolation. How-
ever, in practice, research questions and budget considerations may limit the 
researcher to analyzing only one or two systems. Therefore, it is important to 
appreciate and acknowledge the temperature sensitivity range and thermal 
history resolution that can be obtained with the thermochronometers used 
and to identify where the thermal history will be poorly resolved. Next, for 
Paths 1–6, we invert synthetic data from the AFT and AHe systems separately 
to illustrate their separate contributions to resolving the true paths.

Paths 1 and 2 are equally well resolved if AFT or AHe data are used in 
isolation, or if they are combined and jointly inverted together (Figs. 5 and 6). 
For Path 1, this is because a thermal history with very rapid cooling through 
partial-​annealing and retention temperatures produces a distinct form of AFT 
track-​length data (long, unimodal, narrow distribution) and AHe single-​grain 
age data (flat age-​eU and age-​grain-​size relationships), respectively, and thus 
there is a narrow range of thermal histories that reproduce these data (Fig. S2, 
footnote 1). For both paths, any additional complexity in the attempted t-T his-
tories produces a poorer data fit and is rejected. The inverse thermal history 
deviates from the true histories at temperatures of 100–140 °C; however, this is to 
be expected because such temperatures are too hot for the AFT and AHe data to 
record thermal history information, and the thermal history path is being pulled 
in the direction of the initial constraint added to the model (at 200 Ma, 200 °C).

For the more complex history of Path 4, the ExTH model obtained using 
either AHe or AFT data alone shows that cooling through 90 °C at 100 Ma is 
well constrained. At temperatures <70 °C the AFT data do not tightly constrain 
detail in the thermal history, as shown by the broad 95% credible intervals. 
However, the ExTH path does approximate isothermal holding, albeit with a 
subtle oscillation and at a lower temperature than the true Path 4, before the 
initiation of cooling at the correct time of ca. 25 Ma. The subtle oscillation of the 
ExTH within the 95% credible intervals is likely a consequence of individual t-T 

paths, from which the ExTH is derived, having more extreme oscillations (i.e., 
heating and cooling events around the temperature where the true history has 
isothermal holding). With only AHe data, the model tightly constrains the early 
part of the history (until 80 Ma) and the final episode of cooling from 25 Ma 
to present. In the period between 80 and 30 Ma, the ExTH path shows minor 
cooling and reheating within broad 95% credible intervals (Fig. 6). This is a 
consequence of individual thermal histories of varying complexity (spanning 
the credible interval range) being averaged out.

In the Path 4 example, the MaxLike and MaxPost models, when using AHe 
data only (MaxLikeAHe, MaxPostAHe), are a very good reflection of the true ther-
mal path (Fig. 6). The AFT data resolve only certain parts of the history, such 
as the isothermal holding at 60 °C in the MaxLikeAFT model, or only the slow 
cooling at the beginning of the thermal history in the MaxPostAFT model. This 
suggests that if the RDAAM model is accurate and well calibrated and data 
spans a sufficient range of eU values, then an inversion retrieves the true ther-
mal history. It is also worth noting that the main feature that distinguishes Path 
3 from Path 4, rapid versus slow cooling for the final event starting at 20 Ma or 
25 Ma, respectively, cannot be resolved in any of the models; the more slowly 
cooled scenario is preferred across all of them. As discussed in the Effect of 
Using One Thermochronometer versus Multiple Chronometers section above, 
when we jointly invert the AFT and AHe data, we produce an ExTH model that 
is mostly similar to the AHe-​only ExTH model, with the same oscillating cooling 
and heating structure over the time period where there should be isothermal 
holding (Figs. 5 and 6). Together, these results suggest that the AHe data exert 
more influence on the thermal history model results presented in this work than 
the AFT data. Tightly constrained parts of the thermal history include cooling 
through 100 °C at 100 Ma and the onset of cooling at 25 Ma. The erroneous 
cooling and reheating episode is evident in the MaxPost model, while the 
MaxLike model is a good approximation of the true solution.

Effect of the Prior Time-​Temperature Ranges

Next, we test the effect of changing the “Ranges for General Prior,” which 
sets the prior information on the time and temperature parameters (i.e., defines 
an initial probability distribution for time and temperature before any other 
evidence is introduced) and defines the area in t-T space where t-T paths can 
be proposed. Due to the nature of transdimensional MCMC sampling and the 
criterion to accept proposed models, a broader range of the t-T priors will often 
produce simpler thermal history solutions than a more tightly constrained prior. 
A broad prior can be thought of as a relatively vague state of information that is 
rapidly improved upon when data are added, even with a simple thermal history. 
Therefore, it is important that the ranges for the general prior are both justified 
and sufficiently broad such that the complexity (or simplicity) of the model is not 
overly forced, but not too broad such that model complexity is overly penalized.

For example, setting a temperature prior that covers a temperature range 
from the minimum estimate of the present-​day surface temperature to a little 
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Figure 6. Model results from inverting (1) the apatite fission-​track (AFT) data only and (2) the six single-​grain apatite (U-Th-Sm)/He 
(AHe) ages only (see text for details) generated from each of the six cooling paths. Left: ExTH model. Middle: MaxLike model. Right: 
MaxPost model. In all plots, the white dashed line is the true path. Darker line colors are the model path for (1) and lighter line colors 
are the model paths for (2). Thin dashed colored lines in left-​hand plots are the 95% credible intervals (Cred. Int.) on the ExTH models. 
The data are reproduced in a manner comparable to that observed in Figure 5, or in many cases, the data are better reproduced be-
cause the models in these exercises are only fitting a subset of the data (i.e., the AFT data only or the AHe data only). See Figure S2 
(text footnote 1) for data predictions.
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more than the maximum temperatures a thermochronometer is sensitive to 
on geologic timescales is reasonable. The default prior temperature range 
when working with apatite thermochronometry data is automatically set to 
70 ± 70 °C in QTQt. This covers temperatures from 0 to 140 °C, which encom-
passes the typical AFT-​PAZ and the AHe-​PRZ and sufficiently focuses model 
sampling in the area over which such data are informative.

The “time” prior is harder to define. In our initial examples, the time prior 
is set to the oldest AFT or AHe single grain age ± oldest AFT or AHe single 
grain age (e.g., if the oldest age in the model is 50 Ma, the time space is 50 
± 50 Ma or 100–0 Ma); this is the default option in QTQt v. 5.7.1, used in this 
contribution. However, a broader prior may be more appropriate if the model 
should be investigating a period of geologic time longer than the total time 
period defined by twice the oldest age. Alternatively, when modeling multi-
ple samples separately, it may be more appropriate to have a prior that is the 
same across all models, rather than a prior that changes depending on the 
oldest AFT or AHe age yielded by a particular sample. Here, we demonstrate 
how broadening the time component of the prior influences how well we can 
reproduce a simple thermal history and a complex thermal history. We also 
show to what extent this effect is amplified when we only use the AFT data 
set. Unless specifically mentioned, the data fit for all models is good and indis-
tinguishable between models (see Fig. S4, footnote 1, for data predictions).

We show the inverse modeling results when using Paths 1 and 4 AFT and 
AHe synthetic data, respectively (Fig. 7). For both models, the default prior and 
an initial constraint of 1000 ± 5 Ma, 200 ± 5 °C have been used. The expected 
model reproduces Path 1 almost exactly. For Path 4, the model reproduces 
the timing of cooling, and paleo-​temperature at the onset of cooling reason-
ably well. However, the isothermal holding is not well reproduced due to the 
averaging effect of the range of acceptable models, although it is within the 
95% credible intervals.

Next, we use the same input data but change the time component of the 
general range for prior: (1) 150 ± 150 Ma, (2) 250 ± 250 Ma, and (3) 500 ± 500 Ma 
(Figs. 7 and S4, footnote 1). For Path 1, the inverse models show that altering 
the time prior has no effect on our ability to retrieve the true model, at least 
in this idealized case with “perfect” input data and models of annealing and 
diffusion. The nature of the data produced from the Path 1 thermal history is 
so tightly constrained that it easily overcomes the prior effect. Path 4 shows 
that the difference between the ExTH model for the default prior and for the 
largest prior is negligible, with only a minor difference in the ExTH path where 
there is cooling and reheating between 100 and 50 Ma, and comparable 95% 
credible intervals.

We then repeat the test using only AFT data to investigate to what extent 
the prior effect is amplified when using a smaller data set. Again, for Path 1, 
changing the prior causes no impact on our ability to retrieve the true model. 
The AFT data are simply too well constrained for any models other than rapid 
cooling to be acceptable and broadening the prior has no influence over this.

For Path 4, the effect of broadening the prior can have a significant impact 
on our ability to find the true model. For the default prior, the ExTH path initially 

shows cooling followed by holding at 55 °C between 70 and 45 Ma before 
cooling again to present-​day surface temperatures (Fig. 7). As we increase the 
prior, we observe that the inflections in the ExTH path over this time become 
lessened and smoothed out (Fig. S4, footnote 1) until the ExTH path is reduced 
to a simple continually cooling path (Fig. 7). In addition to smoothing out of 
the path, the 95% credible intervals also become narrower and tighter to the 
ExTH path. With small to moderate increases in the prior the uncertainties 
are large enough such that the models are still comparable, and any misin-
terpretations caused by the prior effect will be relatively minor. However, with 
the largest prior, the 95% credible intervals are narrow and very tight to the 
ExTH path suggesting this thermal history inferring slow monotonic cooling, 
is particularly well constrained (Fig. 7). Clearly, the model produced using the 
default prior (oldest age ± oldest age) and that produced with the largest prior 
(500 Ma ± 500 Ma) would have entirely different geological implications, and 
so broadening the time prior by large amounts should be done with caution, 
particularly if modeling a small data set with limited thermal history infor-
mation in the data.

In summary, broad priors tend to produce simpler solutions. However, 
large or independently constrained data sets will counteract this effect; data 
sets with multiple thermochronometers have more information that is able 
to overcome the weighting exerted by a wide prior. At the same time, a too 
tightly defined prior can lead to misleading well-​resolved results. Therefore, 
the modeler should purposefully tailor their choice of a prior to their data set 
and the questions motivating their modeling and explain this choice as a part 
of documenting their modeling process. When working with large data sets, 
testing many different prior ranges for each sample is likely to be inefficient; 
so a logical starting point would be to define a time prior that is sufficiently 
broad such that it encapsulates all of the observed ages and an estimate of 
the geological time period where the thermal history may be resolved (e.g., 
the oldest observed age ± oldest observed age). In contrast, if the modeler is 
considering using a prior that is excessively large relative to their observed 
ages and temperature sensitivity of the thermochronometers used, then they 
should justify this choice and demonstrate what effect it may have on the 
thermal history, particularly if the data set contains limited information (e.g., 
a single thermochronometer).

Effect of an Initial Constraint

Next, we explore whether explicitly stipulating an initial constraint (i.e., 
a specific model start time) impacts the output thermal history. In QTQt, a 
starting time and temperature for running inversions are not required. If no 
initial constraint box is defined, QTQt will commonly infer rapid cooling imme-
diately before the first point proposed by the model that is constrained by 
the data. This implied period of rapid cooling will depend on the nature of 
the data, which could require that the initial cooling is through both the PAZ 
and PRZ (e.g., Path 1) or is only to temperatures somewhere within the PAZ 
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Figure 7. Model results from inverting the synthetic data from Paths 1 and 4 with different inputs for the “General range for prior.” Additional plots for a prior of 150 
± 150 Ma and 250 ± 250 Ma are provided in Figure S3 (text footnote 1). Top plots show the results from inverting apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) 
together. Bottom plots show the results of inverting only AFT data. Left: ExTH models. Middle: MaxLike models. Right: MaxPost models. In all plots, the white dashed 
line is the true path. Darker line colors are the model path when using the default “General range for prior,” and lighter line colors are the model paths when setting a 
much larger time span for the “General range for prior.” In both scenarios, the prior temperature remains the same at 70 ± 70 °C. Thin dashed colored lines in left-​hand 
plots are the 95% intervals on the ExTH models.
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or PRZ (e.g., Path 4) (Figs. 8A and 8B). Here we investigate whether including 
an initial constraint is useful and, if so, where in t-T space is an appropriate 
or inappropriate place to put that initial constraint. We address these points 
using Paths 1 and 4 for examples and use the default prior (explored above). 
We compare an inverse model with no initial constraint box to inverse models 
testing an initial constraint with a small temperature window (200 ± 5 °C) and 
a large temperature window (100 ± 100 °C). Each of those constraint boxes 
is placed at three different times before the timeframe encompassed by the 

“true” path (200 ± 5 Ma, 500 ± 5 Ma, and 1000 ± 5 Ma).
Without an initial constraint box, the temperature at the beginning of the 

Path 4 ExTH model is ~75 °C at 100 Ma and ~30 °C at 40 Ma in the Path 1 
ExTH model (Figs. 8A and 8B). In both cases, these times and temperatures 
correspond to the conditions when daughter products in both the AHe and 
AFT systems were starting to be retained in the true paths. The inverse model 
results suggest rapid cooling to these temperatures immediately before this 
time. As such, Path 1 is reproduced very well. However, without an initial con-
straint the Path 4 ExTH fails to capture the higher temperature cooling from 
100 to 80 Ma, although the 95% credible intervals do encompass that part of 
the true path (Figs. 8A and 8B).

Adding a constraint box at any time before the initial time point of the true 
t-T paths (i.e., before 40 Ma for Path 1 or before 100 Ma for Path 4) helps to 
retrieve the full structure of the true cooling paths (Figs. 8C–8F). We observe 
an apparent improvement in the 100–80 Ma cooling in the Path 4 inversion 
as the ExTH is drawn toward the imposed constraint, although the difference 
is small, and both fall within the 95% credible intervals. There is essentially 
no difference in cooling history output if the box is placed at different times 
before the model start time defined by the original input. Similarly, there is 
little difference in model output if the constraint box is tight, spanning a nar-
row temperature range, or expanded, spanning a broad temperature range 
(Figs. 8C–8F).

We conclude that if the initial constraint box is placed at a time before the 
onset of daughter product retention in the highest-​temperature thermochro-
nometer, then it does not matter what range of temperatures and time it covers. 
We recommend that the temperature range includes the possibility of exploring 
temperatures hotter than the PRZ/PAZ of the highest temperature chronom-
eters being modeled. However, users should not make interpretations (i.e., 
heating or burial rates) based on the cooling path between the initial constraint 
to the point where the path passes through the maximum temperature limit 
of the modeled thermochronometric systems (e.g., ~110–120 °C in the case of 
the systems modeled in this example). In the absence of an initial constraint, 
the thermal history may start at a point colder than the thermochronometer 
PRZ/PAZ, with the implication of rapid cooling immediately before this time. 
This may be aesthetically unappealing, but as we have shown, imposing an 
initial constraint will create an additional segment of the thermal history path 
between the constraint box and the point where the thermal history passes 
through the maximum closure temperature of the methods being used that is 
entirely the product of the constraint box, not the data. An initial constraint box 

can be useful beyond aesthetics if we know that at some point in a sample’s 
history it existed at higher temperatures (e.g., during igneous rock formation).

We recommend that the data are first inverted with no initial constraint 
box. Then, if the user wishes, an initial constraint box that is hypothetical or 
supported by independent geological or geochronological information can be 
added. Clearly, if there is a known, well-​dated geological constraint, then this 
should guide the time and temperature range of the initial constraint.

Effect of Uncertainties

Lastly, using Paths 1 and 4 as examples, we explore the effects of data 
uncertainty by investigating the differences in model outputs depending on 
data uncertainty assignment choice. Presently, most ages are reported with 
analytical uncertainty, which can be quite small and generally does not capture 
all the factors that can influence the uncertainty on a thermochronologic age. 
Confidently identifying and quantifying all possible uncertainty on cooling 
ages is a challenge being addressed by ongoing research across the thermo-
chronology community (e.g., Flowers et al., 2022b; Ketcham et al., 2022). In 
acknowledgment of this challenge, QTQt offers users the ability to choose the 
option of changing uncertainties on data when modeling. Here we test three 
types of uncertainty: (1) a random error assignment made by QTQt when pro-
ducing the synthetic AHe data (these errors will change with every forward 
model run). This assignment skews to lower errors that are <1%–10% of the 
predicted age and would reflect analytical errors that may be low but vari-
able. (2) This type of uncertainty encapsulates analytical and methodological 
uncertainty and/or reproducibility of standards. This can be subjective and 
result in uncertainties that have absolute values that scale with the observed 
age such that older ages are less precise. (3) A 2 Ma uncertainty assignment 
to all ages produces 3%–13% error on the various input ages in our examples 
presented in this work. This would cause older ages to be treated as being 
more precise than younger ages.

For Path 1, the model output is similar regardless of the choice of uncer-
tainty assignment. The predicted AHe ages are almost identical, and thus 
changing the uncertainty does not have any influence on the model output. 
On the other hand, Path 4 shows marked differences between the cooling path 
outputs. The main difference comes from the model output generated from 
the data with the random error assignment (Fig. 9).

This random error assignment can be considered as an analogue for the 
analytical error attributed to analyzed “unknown” samples. In this case, the 
random error assignment put a relatively small uncertainty on all of the AHe 
ages (<10%), and a few of the ages were given very small uncertainties (e.g., 
the youngest and third youngest ages; Fig. 9). These small uncertainties imply 
that we are confident that the data from those particular samples are highly 
precise and therefore will have a greater influence over the inferred cooling 
history. In the case of Path 4, the tightly constrained samples add much more 
detailed structure to the output cooling history. That detailed structure shows 
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the appearance of multiple heating and cooling events; however, those events 
are small—changes of 5–20 °C over time spans of 10–20 m.y.—and all occur 
within the AHe PRZ. In this case, the assignment of incredibly small errors on 
some of the data is giving a false signal of great detail in the cooling history, 
and the 95% credible intervals show how varied and non-​unique those slight 
heating and cooling episodes are. This is an example of why we generally 
caution against interpretation of small (<15 °C) oscillations in a thermal path 
resolved by a QTQt inversion, especially in a PRZ or PAZ, without detailed 
sensitivity testing to determine what is controlling those oscillations.

We are better able to recover the “true” cooling history of Path 4 once we 
expand the data uncertainty and give more of an equal weighting to the indi-
vidual AHe ages. In fact, there is little difference in the inverse model output 
using an error assignment of 10% versus a uniform 2 Ma (Fig. 9). However, 
using more expanded or uniform error assignment means that we chose to 
forgo the ability of QTQt to incorporate our confidence in the quality of data 
used within a model. Often, with real data, there is a reason to expect and 
retain a small error value on certain data that are deemed to be “high-​quality.” 
In such a case, we do not want to lose that quality assessment, because that 
information is an input used by QTQt to find acceptable cooling paths. How-
ever, there is also the potential that an age is highly precise, but inaccurate, 
which would lead to confidence in an erroneous model solution. Additional 
user options in QTQt (discussed below) allow users to resample AHe ages or 
errors to assess the impact of different individual age measurements.

QTQt also has the ability to scale AHe errors such that they are treated as 
unknown parameters that can be sampled during the model run. The effect 
of this error scaling is typically to increase the error on, and thus reduce the 
influence of, single AHe ages that may be outliers because QTQt finds that 
their measured ages are not a function of known sources of He age variability 
that are modeled, such as grain size or radiation damage. The error rescal-
ing factor can be defined by the user from 0.001 to 1000. This error handling 
approach is a way of recognizing that we know the observed age, but we 
have a poor understanding of the uncertainty on it. It offers a way of handling 
dispersed AHe data sets without manually excluding individual ages from 
thermal history analysis.

Another option QTQt offers is resampling the observed age from an 
assigned uncertainty. In this context, we recognize that our observed age is 
only an estimate of the true age. Intuitively, we can argue that it is better to 
try and fit the true, but unknown, age than the noisy measured age. This true 
age lies somewhere within the age uncertainty range. Then instead of com-
paring the predicted model age to the measured observed age, the predicted 
age is compared to a “sampled observed” age that is randomly sampled 
from the uncertainty range during the inversion. Typically, these ages are 
sampled from a normal distribution with a mean equal to the observed age 
and standard deviation equal to the input error. So, the resampled ages will 
tend to be close to the observed age, but it is possible to sample younger or 
older values. This approach is really only recommended when we have mul-
tiple AHe ages, because a single age resampling will tend to trade off with the 

thermal history sampling. Note also, it does not make sense to combine the 
two resampling strategies mentioned above (i.e., to resample both the ages 
and the errors at the same time).

We do not exhaustively test the resampling feature here but show an 
example of it in practice in the section Handling Complex Apatite (U-Th)/He 
Data in QTQt). Caution should be used when changing data uncertainties, 
especially when the change is to make them smaller (error scaling factor <1). 
In our example, we show that having narrow uncertainties on select data with 
no apparent reason to do so creates false structure in the model output and 
can create a much more complex cooling history that may be tempting to 
interpret but is, in fact, a consequence of the model attempting to fit overly 
precise data. QTQt lets the user define the range of the scaling; so the control 
of very precise data on the model can be readily assessed as needed.

Summary

In the examples shown here, we use “perfect” AHe and AFT data to explore 
effects of model design on inversion results. Even with these “perfect” data, we 
are unable to retrieve all features of the “true” thermal histories. Some key t-T 
features that are less well resolved are rapid cooling through low temperatures 
(e.g., Path 3) and isothermal holding in the AHe PRZ (e.g., at 60 °C in Paths 3 
and 4). In the second case, the inverse model results have more complexity 
(i.e., heating and cooling) than the true paths. These results reflect the non-​
uniqueness of thermochronometric data, even for large and multi-​chronometer 
data sets. User decisions during the model set-​up, such as imposing an initial 
constraint and setting the general ranges for prior, can influence the final form 
of the thermal history. Excessively broadening the prior will generally lead to 
simpler model solutions; however, the more robust the data set is (i.e., statis-
tically significant AFT data and abundant single-​grain AHe ages that can be 
explained by current radiation damage models) the less impact the prior has, 
because the data are able to better constrain the structure of the t-T path. The 
idea that the prior should not be too important, and therefore the data should 
dominate the solutions, is fundamental in the Bayesian approach. However, 
in all cases, it is important to clearly define the prior and initial constraints. 
Setting an initial constraint exerts a largely superficial influence on the model 
result so long as the constraint is not set to a time and temperature that the 
data are informing, and the user takes care to not over-​interpret the part of 
the inversion result that is not informed by data or geologic information. In 
other words, so long as the initial constraint is old enough and/or hot enough, 
the data will still drive the solution.

An important take-​away is that over-​interpreting the expected thermal 
history (ExTH) path is perilous, but the 95% credible intervals provide useful 
guidance as to what features may or may not be resolvable from the data. The 
ExTH is an average of all accepted models, weighted by the posterior proba-
bility of the models. Therefore, it can be based on a variety of simple models 
(for example, protracted monotonic cooling) and also complex models, such 
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as those involving several episodes of heating and cooling. When averaged 
together as the ExTH model, this output may then show minor heating and 
cooling because the simple models smooth out the complexity. However, these 
portions of the thermal history typically have broad 95% credible intervals, 
which indicate that the path is not well constrained and should not be inter-
preted to have geological meaning. Also, estimates of maximum temperature 
during reheating in the ExTH tend to be skewed to lower values relative to the 
MaxLike or even MaxPost models. This is often manifested as predicted ages 
being somewhat older for the expected model (Fig. 9). Thus, the ExTH results 
should always be interrogated further by looking at the MaxLike and MaxPost 
models and their predictions in comparison to the observations, either via a 
graphical representation or through a statistical test conducted by the user 
(e.g., Gallagher, 2016), in order to determine how much complexity and what 
thermal path features or geologic events are necessary to fit the data. To further 
investigate structure in the ExTH, the model can be constrained using rele-
vant geologic information and geochronologic data sets or by using forward 
modeling to test whether the data are able to resolve different hypotheses.

Overall, we encourage users to critically think about decisions regarding 
data, uncertainties, and any prior assumptions before initiating any modeling. 
Use QTQt to explore how each input will control the model design or model 
output by designing a set of sensitivity tests. If certain choices and assump-
tions do control the output, then the user should be clear and explicit about 
why certain decisions were made.

■■ STRATEGIES FOR AND EXAMPLES OF INVERSE THERMAL 
HISTORY MODELING USING QTQt

The above examples of forward and inverse modeling illustrate challenges 
of modeling thermochronometric data sets using QTQt or any modeling pro-
gram. Because thermochronologic data inherently yield non-​unique thermal 
history solutions, a representative range of all possible t-T histories must be 
presented as either forward and/or inverse model results. Once the possible t-T 
histories have been identified, these results must be evaluated and interpreted 
in a geologic context. These challenges require that (1) a modeler understands 
what is controlling model behavior (e.g., input data, model design, and selected 
kinetics), and (2) the modeler determines which aspects of a thermal history 
are geologically possible and geologically meaningful.

It is critical to document the numerous decisions the modeler makes in the 
process of data collection, model design, model inputs, and model interpre-
tation, in order to complete model sensitivity testing approaches (this study 
and Murray et al., 2022) and provide a testable model for future evaluation. 
This sensitivity testing and documenting requires an iterative approach that 
may combine both inverse and forward modeling strategies. In the following 
sections, we present examples of sensitivity testing and interpretation strate-
gies for published thermochronologic data sets. These exercises are useful to 
develop an intuitive understanding for strategies that interrogate the relative 

impact that model design and thermochronologic data have on inversion 
results—a critical consideration for all geologic interpretations based on model 
results. These scenarios include examples from vertical profiles, samples with 
data from multiple chronometric systems, and cases with complex AHe data 
that may be challenging to interpret along with the corresponding AFT data. 
Although the details of these examples are tailored to the algorithms and 
model outputs of QTQt, the strategies are transferable to studies that use other 
thermal history modeling programs. Additionally, we emphasize that there 
are multiple appropriate approaches to handling thermal history modeling 
results, and that the chosen method will depend on the data available as well 
as the geologic problem of interest.

Sensitivity Testing: A Vertical Profile Sampling Strategy

One of the powerful attributes of QTQt is the ability to jointly model mul-
tiple samples with a known vertical relationship, a spatial context that can be 
leveraged to resolve more complete or complex thermal histories (Gallagher, 
2012; cf. Stephenson et al., 2006). For example, samples taken in a long vertical 
transect from an exhuming fault block may be capable of resolving a larger 
magnitude of cooling compared to a single sample or samples spanning a 
smaller spatial (particularly vertical) range. The key assumption here is that a 
deeper (or lower elevation) sample was always hotter, or at least as hot as a 
sample that is shallower (higher elevation). In this case, having samples from 
different present or paleo-​elevations or locations could represent a useful 
paleo-​depth spectrum within the fault block (e.g., Gallagher, 2012; Abbey and 
Niemi, 2018). By modeling all samples together in a vertical profile defined by 
their estimated paleo-​depths, there is a greater chance of recovering a better 
resolved thermal history, including the paleo-​temperature gradient or even 
determining a rate of heating or cooling activity. QTQt uses the highest sam-
ple in a profile as a reference and a linear interpolation to determine thermal 
histories for the lower samples in the profile based on provided elevation or 
depth information and assigned prior temperature offset, which can be allowed 
to vary over time (Gallagher, 2012; Fig. 2; see screenshots of the user interface 
in the tutorial provided in the Supplemental Material, footnote 1). Here, we 
consider vertical profile modeling and the magnitude of cooling captured by 
different systems, different elevation relationships, and a combination of both. 
The question(s) that arise when building vertical profile models in QTQt include: 
How many samples are needed in a vertical profile? Which samples are the 
most important for obtaining different information about the thermal history? 
What might be missing information if a vertical profile cannot be collected? 
We illustrate a sensitivity-​testing approach for evaluating these questions 
through thermal history modeling of vertical profiles with an example from 
the northern Rio Grande rift in Colorado (Abbey and Niemi, 2018). The data 
set we use is from a vertical profile collected on Mount Princeton in the upper 
Arkansas River valley. This profile includes samples with AHe, AFT, and ZHe 
data providing a wide temperature range to capture thermal events.
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The original Mount Princeton vertical profile was made up of nine different 
samples collected by three different research teams (Kelley et al., 1992; Ricketts 
et al., 2016; and Abbey and Niemi, 2018). The collected samples were projected 
onto the exhuming fault plane, to obtain paleo-​distance relationships (Abbey 
and Niemi, 2018). Of the nine samples collected, seven were analyzed for AHe 
(Ricketts et al., 2016; Abbey and Niemi, 2018). Although this profile also has 
ZHe and AFT data, here we focus solely on the questions related to how many 
and which samples are the most useful in a vertical profile, and therefore for 
simplicity, we model only the AHe data in this section (Fig. 10).

Modeling all seven AHe samples together, with no other constraints, and 
using the same model design as was used by the original study (Table S3, see 
footnote 1; Abbey and Niemi, 2018) produces an ExTH model for all samples 
in the profile. Because no initial constraint box was used, the ExTH begins 
where the data begin to provide information for the model and implies rapid 
cooling prior to this time (Table 1). The thermal history begins at temperatures 
hotter than the AHe PRZ and shows relatively slow cooling until ca. 4 Ma, at 
which point, the cooling rate increases (Fig. 10A; Table 1). QTQt also predicts 
an AHe closure time with these models. This is an estimate of the last time a 
sample passed through the base of the PRZ and was not subsequently reset. 
For the run with all the samples, the predicted closure times range from ca. 
14 Ma for the higher samples to ca. 4 Ma for the lower samples in the profile 
(Fig. 10A; Table 1). Comparing the model predicted ages to the measured ages 
shows that the spread in ages observed in the higher samples of the profile is 
not predicted and that observed ages skew slightly higher or lower than the 
predictions for the samples higher in the profile (Fig. 10A).

We leverage this sample-​rich vertical profile to interrogate the potential 
effects of sampling on the timing and precision of cooling identified in the 
inversion. Specifically, we use sensitivity testing that omits key samples in this 
transect to determine if specific samples or number of samples are controlling 
the model output (Table S3, see footnote 1). It is also worth noting that QTQt 
offers the option to include all samples but turn some off as desired. In this 
case, QTQt provides the predicted ages for all the samples, but the turned-​off 
samples are not used in the inversion (i.e., they do not influence the thermal 
histories).

First, we test the removal of the lowest sample in the profile. Removing 
the lowest sample shifts the model start time to begin earlier and at cooler 
temperatures (Fig. 10B; Table 1). Thus, all the samples are beginning in and 
spanning the entire range of the PRZ for AHe. Without the lowest sample, the 
output shows no slower cooling prior to the 4 Ma cooling event, and instead 
shows the samples all undergoing isothermal holding from model start to 
final cooling at 4 Ma. The final cooling phase, beginning at 4 Ma, occurs at 
the same rate as the original vertical profile output containing all of the AHe 
samples. The predicted closure time shifts and the predicted ages for the higher 
samples cover a narrower range and do not capture the spread of ages in the 
highest three samples (Fig. 10B; Table 1).

Removing the highest sample produces an ExTH output that begins at a 
similar time to both the original profile and the test without the lowest sample 

(Fig. 10C; Table 1). The initiation temperature range is the same as the original 
profile (Fig. 10A; Table 1). From the model start until ca. 9 Ma, there may be a 
possible cooling event at a rate of ~10 °C/m.y., although the 95% confidence 
envelope is wide over this timeframe (Fig. 10C; Table 1). The model then 
shows the samples are isothermal until 4 Ma, when the final cooling begins. 
The predicted closure times range from ca. 11 Ma to ca. 4 Ma for the higher 
and lower samples, respectively (Table 1). The predicted ages are similar to 
the observed ages with the two higher samples having a slightly wider range 
in predictions (more like the observations) compared to the predictions when 
the top sample was included (Fig. 10A).

What if only the top and bottom samples were collected and analyzed? In 
other words, can one get these results from only collecting a few samples? 
That would reduce the need to collect the samples at the mid-​elevations. In 
this case, the output model initiates much further back in time than the models 
that include the mid-​profile samples (Figs. 10A,D; Table 1). Both the samples 
begin at temperatures greater than the PRZ for AHe with relatively slow cooling 
from initiation to ca. 5 Ma (Fig. 10D; Table 1). However, the resolution on the 
thermal history is not very precise from model initiation to ca. 10 Ma, when 
we see narrowing of the 95% confidence interval (Fig. 10D). The final cooling 
event, which appears to be slightly earlier, compared to the models from the 
other tests, takes the samples to surface temperatures at a rate of 25 °C/m.y. 
from 5 Ma to the present. The predicted closure ages shift to much older for the 
highest sample and younger for the lowest sample compared to the model runs 
that included the mid-​profile samples (Figs. 10A,B,C; Table 1). The predicted 
ages are much more in line with the observed ages, with more age variability 
in the top sample and very reproducible ages in the bottom sample (Fig. 10D).

Summary

A sampling strategy that includes collecting samples in a vertical or semi-​
vertical profile is an effective way to obtain more information about timing 
and rates of cooling using QTQt. In general, we expect all samples to have 
experienced more or less the same form of thermal history (e.g., timing of 
cooling events), and the paleo-​temperature gradient can be either set to be 
constant or vary with time. However, as sensitivity testing shows, the reso-
lution of the thermal history is dependent on the number of samples in the 
data set and quality of that data. Determining which samples to collect, how 
many, and what the distance between samples should be, will depend on the 
questions being asked, the types of analyses being done, and the availability 
or accessibility of material. Because we often do not have much control on 
those aspects, we need to do the best we can with the available data. The 
types of sensitivity tests we perform here help users to see how the output 
models may be affected by the number of samples included in a vertical profile. 
For example, removing the lowest sample reduces the information used to 
constrain the thermal history at higher temperatures that are inherently asso-
ciated with an older part of the thermal history. Without the highest sample, 
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Figure 10. Left: ExTH model outputs and data predictions for vertical profile sensitivity tests. Middle: data predictions plotted against elevation (Elev.). Right: 1–1 data 
predictions. All apatite (U-Th-Sm)/He (AHe) ages are uncorrected ages. All runs include only AHe data, and tests show the results of removing the highest (B), lowest 
(C), and middle (D) samples within the vertical profile. When modeling a profile in QTQt, all the samples are input in the same run and linked by the information about 
the distance between each sample and the paleo-​geothermal gradient.
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the model fails to precisely constrain the retention of higher elevations at rel-
atively low temperatures before ca. 6 Ma, a key component of the geological 
interpretation. By only using the top and bottom samples in the profile, the 
resolution of the entire range of modeled thermal history across temperatures 
is sacrificed, thus making it difficult to constrain the timing or magnitude of 
the cooling event central to this study (Fig. 10).

QTQt provides the advantage of modeling multiple samples together, cap-
italizing on the temperature variability across a range of paleo-​depths. Vertical 
profiles can be useful at capturing longer cooling histories or documenting 
paleo-​PRZs and paleo-​PAZs, when for example there is a large temperature 
offset due to large sample distances from high-​relief settings. However, the 
functionality of multi-​sample modeling is useful even with little to no vertical 
(and implied temperature) gradient. Thus, jointly modeling samples collected 
in a low-​relief setting can be useful for finding thermal histories that fit all the 
data (e.g., House et al., 2001; Gallagher, 2012).

Sensitivity Testing: The Use of Multiple Chronometers

Another way to complement the vertical profile method is to increase the 
number and/or types of thermochronometric analysis done on each individual 
sample. Similar to vertical profile sampling strategies, using multiple thermo-
chronometers can increase the range of temperatures covered and can provide 
more information about the timing and rates of cooling events. Here we use 
the same example from the northern Rio Grande rift in Colorado, but instead 
of focusing on one data type and taking out samples based on location in the 
vertical profile, we perform sensitivity tests by selecting samples analyzed 
using multiple thermochronometric methods. In addition to the seven AHe 
samples, a sample was analyzed for ZHe (lowest in modern elevation and 

deepest in paleo-​distance space; Abbey and Niemi, 2018), and four samples 
in the middle of the vertical profile were analyzed for AFT (Kelley et al., 1992). 
The power of these tests helps users to determine when and where multiple 
thermochronometers serve as an effective strategy to extract thermal infor-
mation to better inform a specific geologic question.

First, we compare model outputs for each of the individual thermochrono-
metric methods used in the sample set (Fig. 11; Table S4, footnote 1). Although 
the number of samples analyzed using each method is different, and the ele-
vation spanned by those samples is also different, the chronometric-​specific 
outputs provides a baseline for identifying how different data types and com-
binations control the output model. The seven samples analyzed for AHe imply 
information about temperatures higher than the AHe PRZ (>90 °C) because of 
the determined paleo-​depth relationships (Fig. 11A; Abbey and Niemi, 2018). 
Cooling appears to begin gradually and then increases to rapid cooling from 
4 Ma to present (Fig. 11A; Table 2). When modeling only the ZHe data, which 
come solely from the lowest elevation sample, we see protracted monotonic 
cooling from model initiation to present (Fig. 11B; Table 2). When we model 
only the AFT data, which all come from four mid-​profile samples closer to the 
lower elevations in the profile, we see that a distinct cooling event is not well 
captured, although there may be a slight increase in cooling rate at ca. 11 Ma 
(Fig. 11C; Table 2). We note that the credible intervals are significantly wider 
prior to 15–10 Ma, implying lack of resolution prior to any cooling around 
that time.

Combining chronometers either from the same sample or from other 
samples that geologically make sense to be modeled together (e.g., spatial rela-
tionships) adds more data and potentially more detail (Table S5, see footnote 1). 
When combining all of the AHe and AFT samples together, we see a cooling 
event beginning at 4 Ma with different cooling rates depending on sample 
location within the vertical profile (Fig. 12A; Table 3). The model output does 

TABLE 1. RESULTS AND INTERPRETATIONS FROM VERTICAL PROFILE SENSITIVITY TESTS

Model run name Model 
initiation time

(ca. Ma)*

Initial 
temperature range

(~°C)†

Thermal history cooling 
rates (~°C/m.y.) and 

time (ca. Ma)

Position, number of 
samples, and closure time

(ca. Ma)

Original vertical profile 
(seven samples)

14 60–130 3; 13–4
22; 4–0

Top three samples: 14
Middle two samples: 11–8
Bottom two samples: 4–3

Lowest sample removed 
(six samples)

10 35–90 0; 10–4
22; 4–0

Top five samples: 10
Bottom sample:§ 8.5

Highest sample removed 
(six samples)

11.5 60–120 10; 11.5–9
0; 9–4
25; 4–0

Top three samples: 11
Middle two samples: 10–9

Bottom sample: 9–4

Highest sample removed 
(six samples)

41 55–125 1; 41–5
25; 5–0

Top sample: 36–31
Bottom sample: 3–2

*Because we do not include an initial constraint box, the thermal history model begins at the time at which the input 
data begin to inform the model. This implies rapid cooling prior to model initiation.

†This temperature range is determined from the starting temperature of the highest and lowest samples, respectively.
§This is not the lowest sample in the original transect.
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not give much more information besides an indication that the lower samples 
may have been as hot as ~130 °C ca. 20 Ma, and more rapid cooling began 
at ca. 4 Ma.

When AHe and ZHe are combined, the model begins earlier and at hotter 
temperatures (Fig. 12B; Table 3). However, this model is only able to capture 
the 4 Ma cooling event with any detail and confidence and predicts the simple 
solution of monotonic cooling prior to 4 Ma (Fig. 12B; Table 3).

Combining ZHe and AFT, without AHe, loses the resolution on the 4 Ma 
cooling event (Fig. 12C), and the output is similar to the model with only AFT 

data (Fig. 11C), although the possible timing of cooling events shifts. Modeling 
ZHe and AFT data may also identify an additional cooling trend from model 
initiation to ca. 20 Ma, followed by residence within temperatures of the AFT 
PAZ until ca. 8 Ma (Fig. 12C; Table 3). At 8 Ma, the AFT and ZHe model shows 
that there is perhaps another cooling event, although, as with the AFT only 
model, the initiation is broad and difficult to pinpoint.

A combination of all three chronometers (ZHe, AFT, and AHe) illustrates 
the most constrained ExTH model output including two distinct cooling events 
(Fig. 12D). The first cooling event occurs from ca. 24 Ma to ca. 17 Ma, followed 
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Figure 11. Left: ExTH model outputs for single-​chronometer sensitivity tests. Middle: data predictions plotted against elevation. Right: 1–1 data predictions. 
All apatite (U-Th-Sm)/He (AHe) ages are uncorrected ages. The original data set (Abbey and Niemi, 2018) included one sample with ZHe and AHe data, two 
samples with AFT and AHe data, two samples with only AFT data, and four samples with only AHe data. These tests show the modeling results of using 
only one type of chronometer in each run, thus there are four samples in the AFT only run (C), one sample in the zircon (U-Th-Sm)/He (ZHe) only run (B), and 
seven samples in the AHe only run (A).
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by isothermal holding until 4 Ma. The highest samples remain at temperatures 
below the retention and annealing zone temperatures of these mineral systems, 
while the lower samples in the profile are kept in the apatite PRZ and PAZ. 
The final cooling event begins at 4 Ma with samples cooling at different rates, 
depending on sample location in the vertical profile (Fig. 12D).

Summary

Using different chronometers increases the temperature range that mod-
eling programs such as QTQt or HeFTy can use to assess possible thermal 
histories. In this example, we used three different chronometers with a 

combined temperature sensitivity range from 30 °C to 220 °C (e.g., Gleadow 
et al., 1986; Shuster et al., 2006; Guenthner et al., 2013; Ault et al., 2019). Mod-
eling a multi-​chronometer data set with expanded thermal sensitivity extends 
the temporal resolution of the thermal history. In this example, the AHe data 
serve a critical role in clearly resolving the cooling event at ca. 4 Ma; how-
ever, the addition of AFT and ZHe data sets extends the thermal information. 
In particular, the addition of AFT data in this example is critical in identifying 
the timing and rate of an early Miocene cooling event. This suite of sensitivity 
tests on a geologic case study serves as a useful way to develop an intuition 
for identifying the control of thermochronologic data on output models and 
evaluating if models may be oversimplified without additional data or geo-
logic information. Such tests also help users developing a new project to: 

TABLE 2. RESULTS AND INTERPRETATIONS FROM SINGLE-​CHRONOMETER SENSITIVITY TESTS

Model run name Model 
initiation time

(ca. Ma)*

Initial 
temperature range

(~°C)†

Thermal history cooling 
rates (~°C/m.y.) and 

time (ca. Ma)

Position, number of 
samples, and closure time

(ca. Ma)

Only AHe data  
(seven samples)

14 60–130 3; 14–4
20; 4–0

Top three samples: 14
Middle two samples: 11–8
Lowest two samples: 4–3

Only ZHe data  
(one sample)

21 120 4; 21–0 Lowest sample: 21

Only AFT data  
(four samples)

21 100–130 3; 21–11
9; 11–0

Top sample: 21
Middle sample: 18

Lowest two samples: 15–14

*Because we do not include an initial constraint box, the thermal history model begins at the time at which the input data 
begin to inform the model. This implies rapid cooling prior to model initiation.

†This range is determined from the starting temperature of the highest and lowest samples, respectively.
Note: AFT—apatite fission-​track; AHe—apatite (U-Th-Sm)/He; ZHe—zircon (U-Th-Sm)/He.

TABLE 3. RESULTS AND INTERPRETATIONS FROM MULTI-​CHRONOMETER SENSITIVITY TESTS

Model run name Model 
initiation time

(ca. Ma)*

Initial 
temperature range

(~°C)†

Thermal history cooling 
rates (~°C/m.y.) and 

time (ca. Ma) 

Sample type and 
closure time

(ca. Ma)

AFT and AHe data  
(nine samples)

21 70–140 2; 21–4
5–20; 4–0

AHe: 21–11
AFT: 21–16

AHe and ZHe data  
(five samples)

36 130–200 4; 36–4
25; 4–0

AHe: 19–4
ZHe: 28–27

AFT and ZHe data  
(five samples)

26 150–170 7; 26–20
5; 20–8
10; 8–0

ZHe: 24
AFT: 20–15

AFT, AHe, and ZHe data  
(nine samples)

31 140–210 11; 24–17
0; 17–4

8–25; 4–0

AHe: 21–4
ZHe: 23

AFT: 20–17

*Because we do not include an initial constraint box, the thermal history model begins at the time at which the input 
data begin to inform the model. This implies rapid cooling prior to model initiation.

†This temperature range is determined from the starting temperature of the highest and lowest samples, 
respectively.
Note: AFT—apatite fission-​track; AHe—apatite (U-Th-Sm)/He; ZHe—zircon (U-Th-Sm)/He.
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Figure 12. Left: ExTH model outputs and 
data predictions for multi-​chronometer 
sensitivity tests. Middle: data predic-
tions plotted against elevation (Elev.). 
Right: 1–1 data predictions. All apa-
tite (U-Th-Sm)/He (AHe) and zircon 
(U-Th)/He (ZHe) ages are uncorrected 
ages. Models include all samples from 
the original data set (Abbey and Niemi, 
2018) with each kind of data (AHe, ZHe, 
and AFT). Tests show the results of 
using a combination of different chro-
nometers.
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(1) collect multiple samples with a known spatial relationship (e.g., vertical 
profiles); (2) collect fewer samples but incorporate multiple dating techniques; 
or (3) combine a vertical profile sampling strategy with a multi-​chronometer 
analytical strategy.

Sensitivity Testing: Handling Complex AFT-​AHe Data Sets

In this example, we use data from a single sample within the data set pub-
lished by Wildman et al. (2016) from the southwest African continental margin. 
The study reports apatite fission-​track and single-​grain AHe data from Neopro-
terozoic basement rock at the high-​relief transition zone between the low-​relief, 
low-​lying, coastal plain and the low-​relief, elevated, continental interior. The 
data presented by Wildman et al. (2016) are challenging to model because the 
inferred thermal history does not simultaneously fit the AFT and single-​grain 
AHe age data, and there is no robust independent geological information to 
constrain the Mesozoic and Cenozoic thermal history. Here, we attribute the 
complex relationship between the AHe ages and AFT data to the dispersion 
in the AHe ages and note the limited ability of current He diffusion models to 
reproduce this dispersion. This phenomenon has been observed elsewhere, 
particularly at ancient passive continental margins, cratons, and old orogen 
settings (e.g., Hendriks and Redfield, 2005; Kohn et al., 2009; Flowers and 
Kelley, 2011; McKeon et al., 2014; Wildman et al., 2016; Morón et al., 2020), 
and its causes have been thoroughly discussed (Brown et al., 2013; McDan-
nell et al., 2018; Ault et al., 2019; Fox and Carter, 2020). Although the causes 
of AHe age variability are well appreciated (predominantly radiation damage 
and grain size), observed ages are often not fully explained with commonly 
used proxies for these causes, and, in this case, some grains are considered 

“incompatible” with current diffusion models. This scenario invites consid-
eration into what is an appropriate uncertainty to assign to the single-​grain 
AHe ages. It should also be recognized that the fission-​track annealing model 
is unlikely to be perfect, and developments in our understanding of the con-
tribution of non-​thermal annealing phenomena, track etching efficiency, and 
chemical substitutions on annealing kinetics will help to refine and improve 
these annealing models (Ketcham, 2019).

The sample chosen for our example consists of AFT and AHe data. The AFT 
data include single-​grain count data, horizontal confined track lengths with 
angles relative to c-​axis for anisotropic annealing corrections (e.g., Ketcham 
et al., 2007), and a sample mean Dpar to account for compositional effects 
on track annealing (Table S6, see footnote 1). The AHe data consist of four 
two-​termination single grains of varying geometries and eU contents; the orig-
inal data from Wildman et al. (2016) included several one-​termination grains, 
which have been excluded for this example. The AHe ages appear to have 
a strong positive relationship with equivalent spherical grain radius (ESR = 
(3 * volume)/surface area, based on the true 3D geometry of the measured grain) 
consistent with larger grains having higher closure temperatures (e.g., Reiners 
and Farley, 2001), but the single-​grain ages show a strong negative correlation 

with eU, a proxy used for the amount of radiation damage experienced by the 
grain. This negative correlation contradicts the age-​eU relationship predicted by 
radiation damage and annealing models (e.g., Flowers et al., 2009; Gautheron 
et al., 2009). However, Brown et al. (2013) show that competing factors change 
the AHe age, and simple bi-​variate correlations may not be easily observable, 
particularly when interpreting a small number of single grains, as is the case 
in our example. Moreover, negative age-​eU relationships are observed in ZHe 
data sets (Guenthner et al., 2013; Baughman and Flowers, 2020), albeit these 
grains achieve much higher alpha doses, and investigations into radiation 
damage accumulation and annealing in apatite and individual-​grain diffusion 
kinetics more generally is ongoing (Gerin et al., 2017; Willett et al., 2017; Guo 
et al., 2021). Our first decision is, therefore, not to exclude any single-​grain 
AHe ages and instead aim to find a model that is mutually consistent with the 
observed AHe and AFT and the uncertainty of these techniques while evalu-
ating to what extent a particular component of the data, and our model input 
decisions, influence the output and interpretation.

Modeling Individual Data Sets

We initially explore what thermal history information is held in each 
component of the data set (i.e., a single AHe age or AFT data) without any 
additional constraints to assess the compatibility between the individual data 
sets (Table S6, footnote 1). The ExTH generated using only the AFT data infers a 
moderate rate of cooling through the PAZ between 130–80 Ma, which then pro-
gressively slows from 80 Ma to present through temperatures <60 °C (Fig. 13). 
For the AHe data, we first use the analytical error (1σ = 1%) as our uncertainty 
on the observed age and run an inverse model for each single grain (e.g., Sousa 
and Farley, 2020), as well as for all grains combined together as a complete 
AHe data set from a single sample. The ExTH model infers that each grain 
should initially cool through its specific PRZ at different times spanning from 
ca. 215–115 Ma, and each AHe age is reproduced well (Fig. 13). Combining 
all the AHe ages from the sample, the ExTH infers rapid cooling between 140 
and 135 Ma and residence below 30 °C from 120 Ma until present day. Cooling 
through ~60–30 °C between 140 and 120 Ma appears to be well constrained 
with a tight band defined by the 95% credible intervals (Fig. 13). Although a 
model combining all grains is more appropriate given each grain is from the 
same rock, the ExTH has compromised on the data-​fit with no single-​grain 
age being reproduced well.

Our next decision addresses the uncertainty that is assigned to the helium 
ages. We initially used the analytical error. However, given that the data show 
unexplained dispersion, this is likely an under-​estimate of the uncertainty we 
should allow for when modeling the AHe ages. Wildman et al. (2016) add an 
additional 10% of the measured age, which is the standard deviation (repro-
ducibility) of the AHe ages of Durango apatite standards measured during 
their analytical sessions (Table S6, see footnote 1). The consequence of this 
decision is that all of the AHe models have broader 95% credible intervals 
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and more protracted cooling through temperatures lower than ~70 °C (Fig. 13). 
Although the models for individual grains still imply quite disparate timings 
for initial cooling, there is greater overlap between the credible intervals. The 
ExTH that combines all of the AHe grains similarly shows broader 95% credi-
ble intervals and slower cooling, but, with the larger uncertainty, three out of 
four grains are reproducible at 2σ, compared to zero out of four when only the 
analytical error is used. The conclusion from this series of tests is that when 
inverting the AHe data only, using the Flowers et al. (2009) RDAAM, a single 
thermal history capable of reproducing the observed AHe ages at 2σ cannot 
be found. Given what is observed in our tests (Figs. 3 and 6), it is also likely 
that inverting the AFT and AHe data together will not produce a thermal history 
capable of reproducing all components of both data sets. This is problematic 
because all the apatite crystals were from the same granitic-​gneiss host rock, 
and therefore their ages should be predictable with a common history. This 
will only be the case if our measurements are precise, and our annealing and 
diffusion numerical models are entirely representative of the natural processes 
over geologic timescales.

Modeling Joint Data Sets

Following our observations from the individual data set modeling, we 
make the decision whether to exclude the AHe grains that yield a thermal 
history that is the most inconsistent with thermal histories produced by the 
other AHe grains—or are most poorly reproduced when the AHe grains are 
modeled together—or we continue to include all components of the data set 
and search for a mutually consistent thermal history within the scope of the 
uncertainty on each component of the data set. Here, we follow the approach 
of Wildman et al. (2016) and do not exclude any data (Table S6, footnote 1) 
and obtain the thermal history and data predictions shown in Figure 14. We 
observe that cooling through the base of the PAZ starts just before 130 Ma 
and continues at a rate of 1.75 °C/m.y. until 90 Ma, at which point the cooling 
rate slows, and temperatures are <40 °C through to 0 Ma. As anticipated, the 
ExTH does not produce a satisfying visual data fit for all components of the 
data. Two young AHe ages are reproduced with 2σ, and the AFT is almost 
reproduced at 2σ. The MaxPost and MaxLike models are shown in Figure 14 
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to highlight that within the range of sampled thermal histories, from which 
the ExTH model is determined, there are individual models (both simple and 
complex) that do reproduce the AFT age within 2σ. The older AHe ages are 
not well reproduced in any of the models, and, given what was observed in 
the previous series of tests on the individual data sets, it can be said that the 
form of the thermal history is being controlled by the AFT data and the two 
younger AHe ages.

Next, we test the effect of our assumption on the general range for the prior 
and our choice of initial constraint (or lack thereof) has on our expected thermal 
history (Table S6, footnote 1). Our default prior was a t-T space defined by the 

oldest observed age ± oldest observed age and 70 ± 70 °C. As shown above, 
increasing the size of the prior will tend to produce simpler thermal histories, 
and therefore, we explored the effect of using a large prior of 500 ± 500 Ma 
and 100 ± 100 °C. We observe that this change has a negligible effect on our 
thermal history with both models yielding similar ExTHs and data predictions, 
suggesting that the data are dominating the inference of the thermal history 
solutions. Using the default prior, we then test different initial constraints and 
compare this model to our initial “unconstrained” model. We test constraints 
that reflect: (1) the basement being at the surface immediately before depo-
sition of the Karoo Supergroup sedimentary rocks (355 ± 5 Ma, 20 ± 10 °C); 
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Figure 14. Models results (top) and data predictions (bottom) from the joint inversion of apatite fission-​track (AFT) and apatite (U-Th-Sm)/He (AHe) single-​grain data. Predicted (Pred.) 
and observed (Obs.) ages are central AFT ages and uncorrected AHe ages. Left: Model set-​up based on no initial constraints, using the default “General ranges for prior” and a large 
uncertainty on the AHe ages reflecting analytical uncertainty plus an additional 10% uncertainty to reflect standard reproducibility and uncertainty in the method (i.e., radiation 
damage effects). Black—ExTH (with 95% credible intervals); yellow—MaxPost model; pink—MaxLike model. Middle: Black—ExTH (with 95% credible intervals) for a model with the 
same initial conditions as “Left.” Green—ExTH (with 95% credible intervals) for a model with a prior that has been given a larger time range of 500 ± 500 Ma and larger temperature 
range of 100 ± 100 °C. Right: Black—ExTH (with 95% credible intervals) with the same initial conditions as “Left” and an additional constraint at (355 ± 5 Ma, 20 ± 10 °C). Green—ExTH 
(with 95% credible intervals) with the same initial conditions as “Left” and an additional constraint at 180 ± 5 Ma, 20 ± 10 °C. Orange—ExTH (with 95% credible intervals) with the 
same initial conditions as “Left” and an additional constraint at (1000 ± 100 Ma, 1000 ± 100 °C).
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(2) the basement being at the surface immediately before emplacement of 
lavas associated with Karoo magmatism (180 ± 5 Ma, 20 ± 10 °C); and (3) crys-
tallization of the basement rock (1000 ± 100 Ma, 1000 ± 100 °C). Regardless 
of the constraint, we observe that all models cool through the base of the 
PAZ at the same time (ca. 130 Ma) and experience the same cooling history 
between 130–0 Ma as the sample passes through 110–20 °C (Fig. 14). Because 
the sample experienced temperatures greater than the range of temperature 
sensitivities for the AFT and AHe systems immediately prior to 130 Ma, the 
thermal history before this time is not informed by the observed data and is 
entirely dependent on the user’s decision for the initial constraint.

The ExTH shown in Figure 14 is our preferred model because (1) it includes 
all AFT and AHe ages, and the model and model uncertainty (i.e., 95% credible 
intervals) is a product of the complex observed data, their analytical uncer-
tainties, and uncertainties from the annealing and diffusion models used to 
reproduce the data; (2) it is solely driven by the data in the absence of any 
well-​constrained geological constraints, and it does not include speculative 
constraints before the time of cooling through the base of the PAZ, which the 
data provide no information about; (3) the thermal history reproduces the AFT 
age, TLD, and two of the AHe ages well and identifies that the older AHe ages 
may be problematic and cannot be explained with the diffusion model used; 
(4) the thermal history obtained is consistent with the geologic model of the 
region, where cooling follows the rifting and break-​up of southwest Africa 
from eastern South America as observed previously along this margin and 
along other passive continental margins (Wildman et al., 2019a). A different 
user of this data set may have made alternative decisions in data handling and 
screening, model set-​up, and in testing different geologic scenarios (i.e., by 
imposing different constraint boxes). Similarly, another user may have decided 
to use and interpret a different model output (e.g., the posterior model), or 
use the information learned from the inverse modeling approach to propose 
a forward model they feel better fits the geological history and observed data. 
Regardless of what these decisions were, they should be discussed in terms 
of their influence on the thermal history chosen for interpretation, and the 
satisfactory and unsatisfactory parts of the model should be acknowledged. 
In our case, this is clearly the poor data fit to two out of four of our AHe ages.

Handling Complex Apatite (U-Th)/He Data in QTQt

QTQt offers tools to explore the influence of these potentially erroneous 
data on the thermal history and to explore alternative diffusion models that 
may better reproduce the observed data (Table S6, footnote 1). If we decide 
that our AHe ages are complex and likely to be challenging to explain with 
current diffusion models, we can choose not to fit the observed age exactly 
and instead resample the observed He age using random sampling of a normal 
distribution, centered on the observed age, with a standard deviation equal 
to the uncertainty on the observed age. In doing this, we implicitly allow for 
more uncertainty elsewhere (e.g., in the diffusion model) and compare our 

predicted ages to a sampled estimate of the true AHe age when deciding to 
accept a given thermal history model. Alternatively, we can resample the error 
we have assigned to our He ages such that AHe data that are reproduced well 
by the thermal history will have a small error scaling, whereas the AHe data that 
are difficult to reproduce (e.g., outliers, and AHe ages seemingly incompatible 
with chosen diffusion model) have a larger error scaling. In other words, the 
data with lower error scaling will tend to dominate the solution, while data 
with the higher error scaling have reduced importance.

We observe that applying either of these options causes the AHe data over-
all to have less influence on the thermal history, and the ExTH is controlled by 
the AFT data (Fig. 15). If we decide that our observed ages are a good estimate 
of the age, we could explore alternative radiation damage models that have 
been proposed (e.g., Gautheron et al., 2009; Gerin et al., 2017, Willett et al., 
2017). In this case, we note that the Gautheron et al. (2009) model and Gerin 
et al. (2017) model (with D0 = 3 × 10−7 m2/s, activation energy in defect-​free 
crystal, Ea = 100 kJ/mol, additional energy to escape a void, ΔEa = 50 kJ/mol) 
produce similar thermal histories, and differences to the data fit are very small 
(Fig. 15). However, for the Gerin et al. (2017) model with a ΔEa = 70 kJ/mol, we 
obtain a thermal history with slower cooling and now reproduce a third AHe 
age within 2σ. The higher ΔEa is attributed to “vacancy clustering” (Gerin et 
al., 2017) due to long-​term accumulation of radiation damage.

A full assessment of the influence of radiation damage models is beyond 
the scope of this work, but we highlight it briefly here to show that as our 
understanding of the diffusion of helium in apatite develops, complex AHe 
data sets may be better understood. In the interim, the user will need to 
decide whether to allow the AHe data to have more influence on the form of 
the thermal history with an appreciation that the choice of radiation damage 
model may influence the form of the thermal history or adopt a strategy where 
uncertainty in the method is included in the model and therefore depend on 
other sources of information (e.g., from other dating techniques or geological 
data) to help constrain the thermal history.

■■ EXPLORING PATH STRUCTURE TO INTERPRET MODEL RESULTS

So far, we have presented inverse thermal history modeling and sensitivity 
tests as examples of how to determine the full range of plausible t-T paths 
that are consistent with the available thermochronologic data and geologic 
observations. However, in cases for which there is significant t-T path diversity 
in inverse model results (i.e., the ExTH is averaging between many thermal 
histories that are quite different and yet fit the data just as well), it can be diffi-
cult to interpret a geologic history. There is not one single way to handle these 
challenges; however, here we present a workflow for users to follow and a 
strategy for handling a diverse set of QTQt inverse model results (Fig. 16). We 
call this strategy the “Path Structure Approach,” which can be used to evaluate 
model results that show disparate thermal paths, with essentially the same 
likelihood (e.g., MaxLike and MaxPost paths), from a geologic process-​based 
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perspective. Our approach is similar in nature to the Path Family Approach 
outlined in Murray et al. (2022) for looking into different plausible models in 
HeFTy and builds on similar strategies for exploring conditional probabilities 
described by Fox and Shuster (2014).

We propose a workflow that users can follow to identify a “preferred” ther-
mal history to interpret in a geological context (Fig. 16). The workflow involves 
an iterative process of modeling, evaluating what is learned from the model, 
revising the modeling approach, if necessary, based on what has been learned, 

and selecting a “preferred” model. Through this process, a user should learn 
what parts of the model are best resolved by the data, where complexity may 
exist but is not necessarily required to fit the data, and how the available data 
limit the thermal history resolution that can be achieved. This workflow may 
be a very quick process if the ExTH model fits the data and is consistent with 
independent geological information. However, the workflow may be more 
laborious if data are complicated and/or there are a number of hypotheses 
that need to be explored. Often the ExTH is a good choice for the “preferred” 
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Figure 15. Left: ExTH results (top) and data predictions (bottom) from inverting: (1) Apatite fission-​track (AFT) and apatite (U-Th-Sm)/He (AHe) 
data (AHe data modeled with 11% uncertainty) (black line); (2) AFT and AHe data (AHe data modeled with resampling the observed ages within 
the uncertainty) (green line); (3) AFT and AHe data (AHe data modeled with resampling the error on the AHe age (orange line). Right: ExTH re-
sults (top) and data predictions (bottom) from inverting: (1) AFT and AHe data, with AHe data modeled with the Flowers et al. (2009) radiation 
damage accumulation and annealing model (RDAAM) (black line); (2) AFT and AHe data, with AHe data modeled with the Gautheron et al. (2009) 
radiation damage model (green line); (3) AFT and AHe data, with AHe data modeled with the Gerin et al. (2017) radiation damage model and a 

“trapping” energy of 50 kJ/mol (see text for details) (orange line); and (4) AFT and AHe data, with AHe data modeled with the Gerin et al. (2017) 
radiation damage model and a “trapping” energy of 70 kJ/mol (see text for details) (blue line). Predicted and observed ages are central AFT ages 
and uncorrected AHe ages.
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Figure 16. Workflow for the “Path Structure Approach,” a model assessment strategy introduced in this paper. VR—vitrinite reflectance.
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thermal history because it conveys the posterior distribution of all accepted 
models and highlights the level of consistency across individual models (for 
example, with broader or tighter 95% credible intervals). We emphasize that 
the MaxLike model should always be interpreted with caution due to the 
complexity it may infer to fit the data.

In this paper, we give an example of progressing through this workflow 
using four samples with just the AFT ages from the vertical profile discussed in 
the previous section (see Sensitivity Testing: A Vertical Profile Sampling Strat-
egy). We pose the hypothetical scenario (as an exercise only) of controversial 
evidence for overlying sedimentary rocks of unknown thickness that would 
require burial heating of our samples during the early to middle Miocene. In 
this scenario, we are still interested in resolving the timing and rate of fault-​
driven exhumation of the profile during the late Cenozoic. Specifically, we 
would like to know if exhumation has been at a steady rate since the Oligocene, 
or whether there was a younger, more rapid exhumation event in the Miocene.

Initial modeling of the AFT data without any imposed constraints produces 
an ExTH with slow cooling between 20–10 Ma before an increasing cooling rate 
to present day (Fig. 17). We observe that the 95% credible intervals are broad 
at 18 Ma and skew to much colder temperatures, suggesting rapid cooling of 
the samples before the data are used to resolve the younger part of the ther-
mal history. We also note that although the 95% credible intervals narrow to 
constrain the thermal history ca. 10 Ma, they broaden and skew toward higher 
temperatures ca. 5 Ma. These patterns in the 95% credible intervals indicate 
that the ExTH is averaging multiple different thermal histories, which may be 
equally plausible with this specific given data set (e.g., the AFT data were not 
published with track lengths).

Next, we take a closer look at the data fit (Fig. 17A). The data predictions for 
the ExTH do reproduce the four samples within 2σ uncertainty. The sampled 
range of predicted AFT ages (i.e., the AFT ages predicted by all models) also 
fit the observed AFT ages. This output (the ExTH path) may be entirely satis-
factory to the user if there is no known additional geologic information that 
can be incorporated. However, in our hypothetical scenario, we have reason 
to believe there may have been sedimentary cover in the early to middle Mio-
cene, and the ExTH inversion does not reflect this independent information; 
thus, additional modeling work is required (Fig. 16).

The objective of the next step is to find a model that (1) better resolves the 
history between ca. 20–10 Ma, the timing of possible Miocene burial heating, 
and (2) better fits the data. To this end, we choose to examine the noticeably 
wide credible intervals of ~18 m.y. using additional model outputs including 
the MaxLike and MaxPost models. We generate plots showing representative 
accepted thermal histories, color coded by the relative likelihood and poste-
rior (Fig. 17A). We observe that the MaxLike and MaxPost models are entirely 
contradictory but reproduce all of the data within 2σ uncertainty (Fig. 17A).

The contradictory structures of the MaxLike and MaxPost outputs suggest 
that potential solutions might be lost in averaging to the ExTH output; we 
re-​evaluate our inverse modeling approach using three tests. Inverse Test 
(1) manually incorporates an initial constraint to explore whether the inference 

of rapid cooling at the beginning of the unconstrained model is constrained 
by the data. Inverse Test (2) examines the influence of a constraint that forces 
the model to near-​surface temperatures at ca. 18 ± 2 Ma to reflect hypothetical 
sedimentation and burial in the middle Miocene. Inverse Test (3) uses both 
constraints from (1) and (2) (Fig. 17B).

Inverse Test (1), with an initial high-​temperature constraint, yields an ExTH 
that shows that monotonic cooling fits the data reasonably well, and this is 
reinforced by the MaxPost model, although the 95% credible intervals influ-
enced by the MaxLike models suggest the likelihood that <5 Ma reheating 
will also fit the data (Fig. 17B). From Inverse Test (2), we see that the ExTH 
produced, which is conditional on the low-​temperature constraint at 18 ± 2 Ma 
(Fig. 17B), fails to predict the two lower-​elevation AFT ages within 2σ uncer-
tainty. The MaxLike and MaxPost models do fit the data well, but the solutions 
show variable timing and temperatures for maximum heating post–10 Ma and 
different heating and cooling rates (Fig. 17B). Inverse Test (3) shows that all 
models (ExTH, MaxLike, and MaxPost) can fit the data, and that if the 18 Ma 
constraint is valid, then there must be reheating following that phase of cool-
ing, but the timing and rates of that reheating and subsequent cooling are 
variable (Fig. 17B).

If we now evaluate the results of the three inverse tests, we can conclude 
that two thermal history scenarios appear to adequately fit the data within 2σ: 
a simple monotonic cooling history as well as a more complex thermal history 
with cooling to low temperatures at 18 Ma, followed by re-​heating and final 
cooling. However, the rates of cooling and heating and the time and maximum 
temperature of the reheating episode are not well resolved. In this scenario, 
the ExTH presents an average of the possible solutions and itself does not 
reproduce the data as well as the other possible solutions. This approach tests 
the impact of including hypothetical constraint boxes during the inversion and 
assesses the posterior probability conditional on these constraints. This strat-
egy draws comparisons to that employed by Fox and Shuster (2014), where, 
following the inversion of the data, Fox and Shuster (2014) filter models from 
the posterior solution of the inversion based on a specified constraint and 
assess the conditional probabilities across the t-T space.

This approach makes it readily apparent that the data and model design 
alone are not sufficient to distinguish between the monotonic cooling and 
cooling-​reheating scenarios. Therefore, if the user needs to select a preferred 
model, they must justify why it is appropriate and discuss the limitations of 
their interpretations.

A round of forward modeling may help extract new useful information 
from this generally inconclusive inversion result and to identify a “preferred” 
model that predicts the data (e.g., Fig. 17C), both of which can then be carried 
into broader discussion of the geological implications. We present examples 
of two forward modeling iterations that test (1) the timing for a reheating 
episode where the top sample is brought to 100 °C post–15 Ma, and (2) the 
temperature to which the samples cool at 18 Ma. We model all four samples 
in the profile with the thermal history experienced by the top sample in the 
profile shown in Figure 17C, the profile offset between the samples before 
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Figure 17. Example using the “Path Structure 
Approach” to explore the ExTH output from 
an inversion of apatite fission-​track (AFT) data. 
Panel A (left) shows the initial inverse model 
result and data predictions. The 95% credible 
intervals around the ExTH suggest that differ-
ent thermal histories, which are being averaged, 
skew toward lower temperatures ca. 18 Ma and 
warmer temperatures ca. 5 Ma. Those different 
histories can be seen in the lower two plots 
of panel A showing the thermal history paths 
in the top 95% for both the MaxLike and Max-
Post outputs. Panel B (middle) exemplifies three 
inverse tests that explore the structure of the 
MaxLike and MaxPost outputs seen in panel 
A, using constraint boxes. Panel C (right) uses 
two forward modeling tests to examine the path 
structure seen in the MaxLike and MaxPost out-
puts from panel A. Bold black labels and arrows 
indicate where and what parts of the workflow 
(Fig. 16) are in progress.
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present-​day is defined by the 30 °C/km geothermal gradient, and the vertical 
distance between the samples. If the top sample cools to temperatures below 
the AFT PAZ at 18 Ma, then the only way to fit all the data is if the samples 
are reheated by 12–10 Ma. If reheating happens more recently than 10 Ma, 
the lower samples in the profile do not fit the data. However, the data fit bet-
ter if the cooling episode at 18 Ma does not cool the samples below ~70 °C 
(Fig. 17C). Thus, if one views the early-​mid Miocene burial as required by the 
geologic record, a “Path Structure Approach” for assessing these data places 
new bounds on the timing and magnitude of the associated rock heating and 
cooling, even if the inverse models cannot strongly support or refute that this 
hypothetical “controversial” geologic event actually occurred. Alternatively, if 
a user has a clearly expressed philosophical preference for using the simplest 
history resolved by an inverse model for geologic interpretations, then the 
monotonic cooling supported by the MaxPost models could be an appropriate 

“preferred” model result. Regardless of one’s preferred result, all the possible 
thermal histories should be discussed as a part of the geologic interpretation 
to lay a strong foundation for future work.

Iterating between thermal history model results and testable, geologi-
cally based thermal signatures provides not only an effective workflow for 
assessing inconclusive inverse model results but also a roadmap for which 
additional geologic observations or data could narrow the inverse model 
results. Knowing that the data in this “Path Structure Approach” example are 
not as informative as they could be (i.e., only AFT data with no track-​length 
information), we could then decide to take the final step in the workflow and 
aim to improve the model (Fig. 16) by adding new data or geologic obser-
vations. These particular data are part of a vertical profile in which zircon 
and apatite He data also exist. The ExTH with all the data included (Fig. 12D) 
shows some parts of the thermal history that were inferred using just the 
AFT data and the “Path Structure Approach” (e.g., cooling to lower tempera-
tures by 18 Ma), plus minor reheating or isothermal holding and more recent 
cooling. These structures are now reinforced by the He data, agree with the 
forward model tests, and provide evidence against the slow constant mono-
tonic cooling thermal history we derived from the AFT ages alone. Much of 
the data are reproduced by the ExTH in this new model (Fig. 12D), but some 
of the AHe ages are reproduced less well. Again, we can iterate, evaluating 
what we may have learned about our observed data and assessing whether 
the shortcomings are from the analyzed grains or the diffusion model that is 
used to predict the AHe ages. The ExTH may then be chosen as a preferred 
model to interpret geologically, but it remains ready to be falsified or made 
more robust with the addition of new thermochronologic data (e.g., AFT data 
with track lengths) and/or other new geologic information. We reiterate that 
throughout this process, model predictions should be compared to the data 
and can be used to inform further model testing.

Even in a situation where all of the data are predicted well by a thermal 
history, the thermal history is not a unique solution. Any advancement in our 
understanding of the geology of a region, new data collection, and helium 
diffusion and/or fission track annealing has the potential to impact an existing 

thermal history model. The “Path Structure Approach” offers an iterative 
workflow that allows users to explore complex or ambiguous model results. 
This is especially useful for a program such as QTQt, where the commonly 
interpreted thermal history output (ExTH) is not an actual thermal history path, 
but instead is a weighted average of many different possible thermal histories. 
By using this approach and our workflow as a guide (Fig. 16), users will not 
only be able to examine different features of a thermal history but can do it in 
a way that is easy to record and document all steps of the process.

■■ CONCLUSIONS

Thermal history modeling allows us to leverage the richness of low-​
temperature thermochronologic data to make more robust interpretations in 
a range of geologic contexts. As new research projects generate and model 
such data, an explicit and ongoing discussion of modeling approaches and 
interpretation strategies is needed to highlight the opportunities and limita-
tions of thermal history modeling to resolve geologic problems. Although 
this contribution features examples using QTQt, many of the strategies are 
transferable to forward and inverse thermal history modeling exercises using 
alternative programs or codes. Our contribution is designed to:
(1)	Cultivate an intuitive approach to thermal history modeling. The synthetic 

data sets applied in this study are “perfect” data with known “true” thermal 
histories providing an opportunity to develop an intuitive understanding of 
the capacity of thermochronologic data sets to distinguish among distinct 
thermal histories using both forward and inverse modeling. This awareness 
is useful both during research planning—for example, in deciding which 
types of data to collect for testing competing hypotheses—as well as in 
the modeling and data interpretation stages of a project.

(2)	 Suggest best practices for model design and execution. We use both syn-
thetic data and examples from measured (geologic) data sets to outline 
strategies for sensitivity testing thermal history models. Sensitivity testing 
can be used to interrogate what factor(s) control model behavior, including, 
but not limited to, the model design or inversion algorithm, a geologic con-
straint, a data trend, the spatial relationship between samples, or the choice 
of kinetics model. Our examples illustrate why sensitivity testing is an import-
ant exercise to avoid subsampling thermal history solutions for a given data 
set and inadvertently misrepresenting the thermal history model results.

(3)	 Emphasize the importance of reporting all of the decisions that go into 
modeling, including which modeling program and version was used, which 
data are modeled, and what additional model parameters were defined. 
Documenting the effects of modeling decisions on model output provides 
context for geologic interpretations. Importantly, reporting each decision 
will help external users use or reproduce results. There are several tem-
plates available for workers to use when recording their sensitivity tests 
and when publishing modeling decisions (e.g., Tables S2–S7, see footnote 1; 
Flowers et al., 2015; Wildman et al., 2019b).
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(4)	 Introduce interpretation strategies including a detailed workflow for what 
we term the “Path Structure Approach,” well suited to evaluate thermal 
history model results from QTQt. Describing, interrogating, and interpreting 
thermal history model results can be challenging. We provide examples 
of working with profile data, multiple chronometers, and data sets with 
seemingly unexplainable age variation. As researchers, we know our data 
are not perfect, nor are the predictive models for diffusion and annealing; 
therefore, we should not expect a perfectly resolved thermal history model. 
Consequently, we highly recommend performing similar sensitivity tests, 
with both inverse and forward modeling approaches, and we encourage 
the development of additional useful interpretation strategies for all types 
of thermochronometric data.
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