721 research outputs found

    Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions

    Get PDF
    Phthalate acid esters (PAEs) are commonly used plastic additives, not chemically bound to the plastic that migrate into surrounding environments, posing a threat to environmental and human health. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are two common PAEs found in agricultural soils, where degradation is attributed to microbial decomposition. Yet the impact of the plastic matrix on PAE degradation rates is poorly understood. Using 14C-labelled DBP and DEHP we show that migration from the plastic matrix into soil represents a key rate limiting step in their bioavailability and subsequent degradation. Incorporating PAEs into plastic film decreased their degradation in soil, DBP (DEHP) from 79% to 21% (9% to <1%), over four months when compared to direct application of PAEs. Mimicking surface soil conditions, we demonstrated that exposure to ultraviolet radiation accelerated PAE mineralisation twofold. Turnover of PAE was promoted by the addition of biosolids, while the presence of plants and other organic residues failed to promote degradation. We conclude that PAEs persist in soil for longer than previously thought due to physical trapping within the plastic matrix, suggesting PAEs released from plastics over very long time periods lead to increasing levels of contamination

    Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils

    Get PDF
    Due to their substantial volume, subsoils contain more of the total soil carbon (C) pool than topsoils. Much of this C is thousands of years old, suggesting that subsoils offer considerable potential for long-term C sequestration. However, knowledge of subsoil C behaviour and manageability remains incomplete, and subsoil C storage potential has yet to be realised at a large scale, particularly in agricultural systems. A range of biological (e.g. deep-rooting), chemical (e.g. biochar burial) and physical (e.g. deep ploughing) C sequestration strategies have been proposed, but are yet to be assessed. In this review, we identify the main factors that regulate subsoil C cycling and critically evaluate the evidence and mechanistic basis of subsoil strategies designed to promote greater C storage, with particular emphasis on agroecosystems. We assess the barriers and opportunities for the implementation of strategies to enhance subsoil C sequestration and identify 5 key current gaps in scientific understanding. We conclude that subsoils, while highly heterogeneous, are in many cases more suited to long-term C sequestration than topsoils. The proposed strategies may also bring other tangible benefits to cropping systems (e.g. enhanced water holding capacity and nutrient use efficiency). Furthermore, while the subsoil C sequestration strategies we reviewed have large potential, more long-term studies are needed across a diverse range of soils and climates, in conjunction with chronosequence and space-for-time substitutions. Also, it is vital that subsoils are more consistently included in modelled estimations of soil C stocks and C sequestration potential, and that subsoil-explicit C models are developed to specifically reflect subsoil processes. Finally, further mapping of subsoil C is needed in specific regions (e.g. in the Middle East, Eastern Europe, South and Central America, South Asia and Africa). Conducting both immediate and long-term subsoil C studies will fill the knowledge gaps to devise appropriate soil C sequestration strategies and policies to help in the global fight against climate change and decline in soil quality. In conclusion, our evidence-based analysis reveals that subsoils offer an untapped potential to enhance global C storage in terrestrial ecosystems

    Restenosis, reocclusion and adverse cardiovascular events after successful balloon angioplasty of occluded versus nonoccluded coronary arteries: Results from the multicenter american research trial with cilazapril after angioplasty to prevent transluminal coronary obstruction and restenosis (MARCATOR)

    Get PDF
    OBJECTIVES: This study sought to compare the frequency of restenosis, reocclusion and adverse cardiovascular events after angioplasty of occluded versus nonoccluded coronary arteries. BACKGROUND: Angioplasty of chronically occluded coronary arteries is believed to be associated with a higher frequency of restenosis and reocclusion than angioplasty of subtotal stenoses. Whether this leads to adverse cardiovascular events is unknown. METHODS: The Multicenter American Research Trial With Cilazapril After Angioplasty to Prevent Restenosis (MARCATOR) was a placebo-controlled trial with angiographic follow-up to determine the effect of the angiotensin-converting enzyme inhibitor cilazapril on the frequency of restenosis. In this trial, restenosis was defined as 1) angiographic reduction of minimal lumen diameter > or = 0.72 mm between angioplasty and the follow-up visit; and 2) > 50% diameter stenosis on the follow-up angiogram. We identified

    Haplotyping the human leukocyte antigen system from single chromosomes

    Get PDF
    We describe a method for determining the parental HLA haplotypes of a single individual without recourse to conventional segregation genetics. Blood samples were cultured to identify and sort chromosome 6 by bivariate flow cytometry. Single chromosome 6 amplification products were confirmed with a single nucleotide polymorphism (SNP) array and verified by deep sequencing to enable assignment of both alleles at the HLA loci, defining the two haplotypes. This study exemplifies a rapid and efficient method of haplotyping that can be applied to any chromosome pair, or indeed all chromosome pairs, using a single sorting operation. The method represents a cost-effective approach to complete phasing of SNPs, which will facilitate a deeper understanding of the links between SNPs, gene regulation and protein function

    Neutron background in large-scale xenon detectors for dark matter searches

    Full text link
    Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (alpha,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 109101010^{-9}-10^{-10} pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.Comment: 35 pages, 13 figures, 2 tables, accepted for publication in Astroparticle Physic

    Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing

    Get PDF
    Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration.The main sponsor of the Symposium was the CSIRO Research Office. Co-sponsors were The University of Melbourne, RMIT University, and the software companies associated with ThingWorx, Solvia, MSC Simufact, Materialise and Flow-3D

    Electron-electron interactions and two-dimensional - two-dimensional tunneling

    Full text link
    We derive and evaluate expressions for the dc tunneling conductance between interacting two-dimensional electron systems at non-zero temperature. The possibility of using the dependence of the tunneling conductance on voltage and temperature to determine the temperature-dependent electron-electron scattering rate at the Fermi energy is discussed. The finite electronic lifetime produced by electron-electron interactions is calculated as a function of temperature for quasiparticles near the Fermi circle. Vertex corrections to the random phase approximation substantially increase the electronic scattering rate. Our results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file; Phys. Rev. B (in press

    Some investigations into non passive listening

    Get PDF
    Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening

    Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings

    Get PDF
    Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal barrier coatings have been developed via low activity chemical vapor deposition and high activity pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed when switching processes. The structural evolution of each coating at various stages of the fabrication process has been and subsequent cyclic oxidation is presented, and the relevant interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in need of further improvement in both cases

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom
    corecore