197 research outputs found
Update on the Risk of Hepatocellular Carcinoma in Chronic Hepatitis B Virus Infection
Chronic hepatitis B virus infection is an important cause of liver-related morbidity and mortality, with hepatocellular carcinoma being the most life-threatening complication. Because of the highly variable clinical course of the disease, enormous research efforts have been made with the aim of revealing the factors in the natural history that are relevant to hepatocarcinogenesis. These include epidemiological studies of predisposing risk groups, viral studies of mutations within the hepatitis B viral genome, and clinical correlation of these risk factors in predicting the likelihood of development of hepatocellular cancer in susceptible hosts. This update addresses these risks, with emphasis on the latest research relevant to hepatocarcinogenesis
Structural basis for delta cell paracrine regulation in pancreatic islets
International audienceLittle is known about the role of islet delta cells in regulating blood glucose homeostasis in vivo. Delta cells are important paracrine regulators of beta cell and alpha cell secretory activity, however the structural basis underlying this regulation has yet to be determined. Most delta cells are elongated and have a well-defined cell soma and a filopodia-like structure. Using in vivo optogenetics and high-speed Ca2+ imaging, we show that these filopodia are dynamic structures that contain a secretory machinery, enabling the delta cell to reach a large number of beta cells within the islet. This provides for efficient regulation of beta cell activity and is modulated by endogenous IGF-1/VEGF-A signaling. In pre-diabetes, delta cells undergo morphological changes that may be a compensation to maintain paracrine regulation of the beta cell. Our data provides an integrated picture of how delta cells can modulate beta cell activity under physiological conditions
A Severe Lack of Evidence Limits Effective Conservation of the World's Primates
Threats to biodiversity are well documented. However, to effectively conserve species and their habitats, we need to know which conservation interventions do (or do not) work. Evidence-based conservation evaluates interventions within a scientific framework. The Conservation Evidence project has summarized thousands of studies testing conservation interventions and compiled these as synopses for various habitats and taxa. In the present article, we analyzed the interventions assessed in the primate synopsis and compared these with other taxa. We found that despite intensive efforts to study primates and the extensive threats they face, less than 1% of primate studies evaluated conservation effectiveness. The studies often lacked quantitative data, failed to undertake postimplementation monitoring of populations or individuals, or implemented several interventions at once. Furthermore, the studies were biased toward specific taxa, geographic regions, and interventions. We describe barriers for testing primate conservation interventions and propose actions to improve the conservation evidence base to protect this endangered and globally important taxon
Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice
Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner
Measurements of the branching fractions for decays at Belle II
This paper reports a study of decays using
fb of data collected during 2019--2020 by the Belle II experiment at the
SuperKEKB asymmetric-energy collider, corresponding to events. We find , ,
, and signal events in the decay modes , ,
, and , respectively. The uncertainties quoted for the
signal yield are statistical only. We report the branching fractions of these
decays: where the first
uncertainty is statistical, and the second is systematic. The results are
consistent with world-average values
- …