31 research outputs found

    Hydroxylation of a hederagenin derived saponin by a Xylareaceous fungus found in fruits of Sapindus saponaria

    Full text link
    During our screening of tropical plants for endophyte microorganisms, a Xylareaceous fungus was found living on the internal part of Sapindus saponaria fruits. The fruits of S. saponaria accumulate great amounts of triterpenoidal and sesquiterpenoidal saponins. The saponin 3-O-(β-D-xylopyranosyl)-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl-hederagenin was isolated using chromatographic methods, after alkaline hydrolysis of the crude extract obtained from S. saponaria fruits and added to the culture medium used to grows the fungus. A new saponin was isolated from this experiment by preparative scale HPLC and characterized as a 22α-hydroxy derivative. The structure of this hydroxylated saponin was elucidated based on interpretation of MS/MS data and NMR spectra

    Isomeric separation of cannabinoids by UPLC combined with ionic mobility mass spectrometry (TWIM-MS)-Part I

    Get PDF
    The Cannabis sativa L. plant is rich in a wide variety of cannabinoids. δ9-tetrahydrocannabinol (δ9-THC) is the main chemical compound responsible for its psychoactive effect, and it can be identified as [M+H]+ and [M-H]- ions at m/z 315 and 313, respectively, where M=C21H30O2. However, six other isomeric or isobaric forms of δ9-THC can exist, which makes its unequivocal characterization a challenge. In this work, ultra-high liquid chromatography coupled to traveling wave ion mobility mass spectrometry (UPLC-TWIM-MS) were applied to both electrospray ionization modes (ESI(±)) and used to analyze hashish, marijuana, and parts of the Cannabis Sativa L. plant (flower and leaf). The presence of a complex isomeric mixture of cannabinoids has been identified, and the mixture mainly contains δ9-THC, cannabidiol (CBN-C5 and Mw =310Da), δ9-tetrahydrocannabinolic acid A and B (δ9-THCA-C5 A/B and Mw =358Da) and their isomers. Three isomers of the ions were identified at m/z 315/313, 311, and 357 by using direct infusion ESI-TWIM-MS technique, while higher selectivity was observed in UPLC-ESI-TWIM-MS data, with the maximum isomeric separation between four and five compounds achieved when using single-ion mode (SIM) acquisition. The ions at m/z 311/309, 315/313, 345, and 357 correspond to CBN-C5, δ9-THC, cannabielsioc acid, δ9-THCA-C5 and their isomers, respectively, and they were the main species found. The calculations of collision cross sections were reported for all isomers of cannabinoids and associated with TWIM-MS results

    Human cerebral organoids and fetal brain tissue share proteomic similarities

    Get PDF
    The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases7CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temNão tem14/21035-0; 16/07332-7; 13/08711-3; 14/10068-4JN, VS-C, and DM-D-S are supported by the São Paulo Research Foundation (FAPESP) grants 14/21035-0, 16/07332-7, 13/08711-3, and 14/10068-4. CS was recipient of a CAPES-FAPERJ Postdoc fellowship. Other funds are provided by the National Council for Scientific and Technological Development (CNPq), the Instituto Nacional de Ciência e Tecnologia de Neurociência Translacional (INCT-INNT), Foundation for Research Support in the State of Rio de Janeiro (FAPERJ), Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Funding Authority for Studies and Projects (FINEP), and Brazilian Development Bank (BNDES

    Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic

    Get PDF
    Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, suchas type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lyso-phospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen’s disease, and kidney, liver, bladder, and lung cancer)

    Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study

    Get PDF

    Urinary Metabolites Altered during the Third Trimester in Pregnancies Complicated by Gestational Diabetes Mellitus: Relationship with Potential Upcoming Metabolic Disorders

    No full text
    Gestational diabetes mellitus (GDM) is a disorder in pregnancy with highest impact in the future life of both mother and newborn. Increasing incidence, economic impact, and potential for severe GDM-related pregnancy complications are some factors that have motivated the deep study of physiopathology, risk factors for developing GDM, and potential biomarkers for its diagnosis. In the present pilot study, we analyzed the urinary metabolome profile of GDM patients in the 3rd trimester of pregnancy, when GDM is already established and the patients are under dietary and pharmacological control. An untargeted metabolomics method based on liquid chromatography–mass spectrometry analysis was developed to identify differentially expressed metabolites in the GDM group. We identified 14 metabolites that are significantly upregulated in the urine of GDM patients, and, more importantly, we identified those related with the steroid hormone biosynthesis and tryptophan (TRP) metabolism pathways, which are associated with GDM pathophysiology. Thus, these metabolites could be screened as potential prognostic biomarkers of type two diabetes mellitus, coronary artery disease and chronic renal failure in future follow-up studies with GDM patients
    corecore