792 research outputs found

    Integrated design checkout of shuttle payload avionics interfaces

    Get PDF
    Orbiter/payload avionics integration testing in the shuttle program are discussed. Payloads show extensive orbiter interfaces. The three testing modes used to verify orbiter/payload avionics interfaces are described. These modes consist of orbiter testing using generic payload simulators, payload testing utilizing the actual payload and a high fidelity orbiter simulator, and interface testing with the actual orbiter and payload. Several special avionics techniques, such as the split flight computer technique were developed for this testing. Experience from the first six shuttle cargoes is reviewed and problems found in testing that would have hampered mission success are emphasized

    Colorimetric qualification of shear sensitive liquid crystal coatings

    Get PDF
    The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared with conventional point measurement sensors. It has yet to be determined if a repeatable correlation exists between the measured color of a liquid crystal coating and the magnitude/directional components of a shear vector imposed onto it

    R&D ERL: HTS Solenoid

    Get PDF
    An innovative feature of the ERL project is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The HTS solenoid design offers many advantages because of several unique design features. Typically the solenoid is placed outside the cryostat which means that the beam gets significantly defused before a focusing element starts. In the current design, the solenoid is placed inside the cryostat which provides an early focusing structure and thus a significant reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at {approx}77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre-tests which would have been prohibitively expensive at 4 K in liquid helium because of the additional requirements of cryostat and associated facilities

    Models of Passive and Reactive Tracer Motion: an Application of Ito Calculus

    Full text link
    By means of Ito calculus it is possible to find, in a straight-forward way, the analytical solution to some equations related to the passive tracer transport problem in a velocity field that obeys the multidimensional Burgers equation and to a simple model of reactive tracer motion.Comment: revised version 7 pages, Latex, to appear as a letter to J. of Physics

    Effects of Disorder State and Interfacial Layer on Thermal Transport in Copper/Diamond System

    Get PDF
    The characterization of Cu/diamond interface thermal conductance (hc) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers weredeposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The hc across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined usingtime-domain thermoreflectance. The hc is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in hc. Furthermore, hc was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study

    A non-perturbative renormalization group study of the stochastic Navier--Stokes equation

    Full text link
    We study the renormalization group flow of the average action of the stochastic Navier--Stokes equation with power-law forcing. Using Galilean invariance we introduce a non-perturbative approximation adapted to the zero frequency sector of the theory in the parametric range of the H\"older exponent 4−2 ε4-2\,\varepsilon of the forcing where real-space local interactions are relevant. In any spatial dimension dd, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε=2\varepsilon=2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a \emph{saturation} in the ε\varepsilon-dependence of the scaling dimension of the eddy diffusivity at ε=3/2\varepsilon=3/2 when, according to perturbative renormalization, the velocity field becomes infra-red relevant.Comment: RevTeX, 18 pages, 5 figures. Minor changes and new discussion

    Metastatic Pancreatic Adenocarcinoma After Total Pancreatectomy Islet Autotransplantation for Chronic Pancreatitis

    Get PDF
    Total pancreatectomy with islet autotransplantation (TPIAT) is being used increasingly as a definitive treatment for chronic pancreatitis. Patients with chronic pancreatitis have an elevated risk of pancreatic cancer, which can also masquerade as acute or chronic pancreatitis, making the diagnosis challenging. We describe here the first case of pancreatic ductal adenocarcinoma developing in the liver of a patient after TPIAT for presumed benign chronic pancreatitis. Retrospective analysis of the patient’s preoperative serum revealed normal carbohydrate antigen 19-9 and carcinoembryonic antigen levels but elevated levels of microRNAs -10b, -30c, and -106b compared with controls. Screening guidelines are important to reduce the risk of transplantation of malignant tissue. More sensitive screening tools, including the potential use of microRNAs, are needed to detect early preclinical disease, given the highly malignant nature of pancreatic cancer
    • …
    corecore