8 research outputs found

    Novel Bradykinin-Potentiating Peptides and Three-Finger Toxins from Viper Venom: Combined NGS Venom Gland Transcriptomics and Quantitative Venom Proteomics of the Azemiops feae Viper

    Get PDF
    Feae’s viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered

    Coupling effect in field Hall elements based on thin-film SOI MOS transistors

    No full text
    The influence of the coupling effect on the parameters of field Hall elements based on thin-film MOS transistors has been studied. Analysis of the development of today’s microelectronics shows the necessity of developing the element base for high performance sensors based on silicon technologies. One way to significantly improve the performance of sensing elements including magnetic field sensors is the use of thin-film transistors on the basis of silicon on insulator (SOI) structures. It has been shown that field Hall sensors (FHS) may become the basis of high-performance magnetic field sensors employing the coupling effect occurring in the double gate vertical topology of these sensing elements. Electrophysical studies of FHS have been conducted for different gate bias and power supply modes. The results show that the coupling effect between the gates occurs in FHS if the thickness of the working layer between the gates is 200 nm. This effect leads to an increase in the effective carrier mobility and hence an increase in the magnetic sensitivity of the material. Thus field Hall elements based on thin-film transistors fabricated using silicon technologies provide for a substantial increase in the magnetic sensitivity of the elements and allow their application in highly reliable magnetic field sensors

    Peptide from sea anemone metridium senile affects transient receptor potential ankyrin-repeat 1 (TRPA1) function and produces analgesic effect

    Get PDF
    The Transient Receptor Potential Ankyrin-repeat 1 (TRPA1) is an important player in pain and inflammatory pathways. It is a promising target for novel drugs development for treatment of a number of pathological states. A novel peptide producing significant potentiating effect (up to ~90%) on AITC- and diclofenac-induced currents of TRPA1 was isolated from the venom of sea anemone Metridium senile. It is 35 amino acid peptide cross-linked by two disulfide bridges, named Ï„-AnmTX Ms 9a-1 (short name Ms 9a-1) according to structure similarity to other sea anemone peptides belonging to structural group 9a. The structure of two genes encoding different precursor proteins of Ms 9a-1 were determined. Peptide Ms 9a-1 acted as a positive modulator of TRPA1 in vitro but did not cause pain or thermal hyperalgesia when injected in mice hind paw. Intravenous injection of Ms 9a-1 (0.3 mg/kg) produced significant decrease of nociceptive and inflammatory response to AITC (agonist of TRPA1) and reversed CFA-induced inflammation and thermal hyperalgesia. Taken together, these data support the hypothesis that Ms 9a-1 potentiates response of TRPA1 to endogenous agonists followed by persistent functional loss of TRPA1-expressing neurons. We can conclude that TRPA1 potentiating may be useful as therapeutic approach since Ms 9a-1 produce significant analgesic and anti- inflammatory effect in mice models of pain

    New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties

    Get PDF
    A novel bioactive peptide named Ï„-AnmTx Ueq 12-1 (short name Ueq 12-1) was isolated and characterized from the sea anemone Urticina eques. Ueq 12-1 is unique among the variety of known sea anemone peptides in terms of its primary and spatial structure. It consists of 45 amino acids including 10 cysteine residues with an unusual distribution and represents a new group of sea anemone peptides. The 3D structure of Ueq 12-1, determined by NMR spectroscopy, represents a new disulfide-stabilized fold partly similar to the defensin-like fold. Ueq 12-1 showed the dual activity of both a moderate antibacterial activity against Gram-positive bacteria and a potentiating activity on the transient receptor potential ankyrin 1 (TRPA1). Ueq 12-1 is a unique peptide potentiator of the TRPA1 receptor that produces analgesic and anti-inflammatory effects in vivo. The antinociceptive properties allow us to consider Ueq 12-1 as a potential analgesic drug lead with antibacterial properties

    Screening of the Promising Direct Thrombin Inhibitors from Haematophagous Organisms. Part I: Recombinant Analogues and Their Antithrombotic Activity In Vitro

    No full text
    The success in treatment of venous thromboembolism and acute coronary syndromes using direct thrombin inhibitors has stimulated research aimed at finding a new anticoagulant from haematophagous organisms. This study deals with the comparison between hirudin-1 from Hirudomedicinalis(desirudin), being the first-known and most well-studied natural anticoagulant, along with recombinant analogs of haemadin from the leech Haemadipsa sylvestris, variegin from the tick Amblyomma variegatum, and anophelin from Anopheles albimanus. These polypeptides were chosen due to their high specificity and affinity for thrombin, as well as their distinctive inhibitory mechanisms. We have developed a universal scheme for the biotechnological production of these recombinant peptides as pharmaceutical substances. The anticoagulant activities of these peptides were compared using the thrombin amidolytic activity assay and prolongation of coagulation time (thrombin time, prothrombin time, and activated partial thromboplastin time) in mouse and human plasma. The preliminary results obtained suggest haemadin as the closest analog of recombinant hirudin-1, the active substance of the medicinal product Iprivask (Aventis Pharmaceuticals, USA) for the prevention of deep venous thrombosis in patients undergoing elective hip or knee replacement surgery. In contrast, variegin can be regarded as a natural analog of bivalirudin (Angiomax, The Medicines Company), a synthetic hirudin-1 derivative certified for the treatment of patients undergoing percutaneous coronary intervention and of patients with unstable angina pectoris after percutaneous transluminal coronary angioplasty

    Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels

    No full text
    It has been previously reported that pretreatment with exogenous heat shock protein 70 (Hsp70) is able to protect cells and animals from the deleterious effects of bacterial lipopolysaccharide (LPS) produced by Gram-negative bacteria. However, the effects of Hsp70 pretreatment on lipoteichoic acid (LTA) challenge resulted from Gram-positive bacteria infection have not been fully elucidated. In this study, we demonstrated that preconditioning with human recombinant Hsp70 ameliorates various manifestations of systematic inflammation, including reactive oxygen species, TNFα, and CD11b/CD18 adhesion receptor expression induction observed in different myeloid cells after LTA addition. Therefore, exogenous Hsp70 may provide a mechanism for controlling excessive inflammatory responses after macrophage activation. Furthermore, in a rat model of LTA-induced sepsis, we demonstrated that prophylactic administration of exogenous human Hsp70 significantly exacerbated numerous homeostatic and hemodynamic disturbances induced by LTA challenge and partially normalized the coagulation system and multiple biochemical blood parameters, including albumin and bilirubin concentrations, which were severely disturbed after LTA injections. Importantly, prophylactic intravenous injection of Hsp70 before LTA challenge significantly reduced mortality rates. Thus, exogenous mammalian Hsp70 may serve as a powerful cellular defense agent against the deleterious effects of bacterial pathogens, such as LTA and LPS. Taken together, our findings reveal novel functions of this protein and establish exogenous Hsp70 as a promising pharmacological agent for the prophylactic treatment of various types of sepsis
    corecore