1,367 research outputs found

    Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy

    Get PDF
    Novel covalent porphyrin and its complexes (Co2+, Zn2+) functionalized multi-walled carbon nanotubes (MWNTs) have been successfully synthesized by the reaction of the carboxyl on the surface of MWNTs which was synthesized to use carbon radicals generated by the thermal decomposition of azodiisobutyronitrile (AIBN) with 5-p-hydroxyphenyl-10,15,20-triphenyl-porphyrin and its complexes (Co2+, Zn2+). Three resulting nanohybrids were characterized by spectroscopy (FT-IR, Raman, and UV-vis), TGA, and TEM. The quality of porphyrin attached to the MWNTs was determined from thermogravimeric analysis (TGA) of the MWNTs, which showed a weight loss of about 60%. The Raman and absorption spectroscopy data showed that the electronic properties of modified MWNTs were mostly retained, without damaging their one-dimensional electronic properties. From fluorescence measurements, it was observed that the porphyrin and its complexes (Co2+, Zn2+) were nearly quenched by MWNTs, indicating that this covalently modified mode facilitated the effective energy or electron transfer between the excited porphyrin moiety and the extended π-system of MWNTs

    A Motion Illusion Reveals Mechanisms of Perceptual Stabilization

    Get PDF
    Visual illusions are valuable tools for the scientific examination of the mechanisms underlying perception. In the peripheral drift illusion special drift patterns appear to move although they are static. During fixation small involuntary eye movements generate retinal image slips which need to be suppressed for stable perception. Here we show that the peripheral drift illusion reveals the mechanisms of perceptual stabilization associated with these micromovements. In a series of experiments we found that illusory motion was only observed in the peripheral visual field. The strength of illusory motion varied with the degree of micromovements. However, drift patterns presented in the central (but not the peripheral) visual field modulated the strength of illusory peripheral motion. Moreover, although central drift patterns were not perceived as moving, they elicited illusory motion of neutral peripheral patterns. Central drift patterns modulated illusory peripheral motion even when micromovements remained constant. Interestingly, perceptual stabilization was only affected by static drift patterns, but not by real motion signals. Our findings suggest that perceptual instabilities caused by fixational eye movements are corrected by a mechanism that relies on visual rather than extraretinal (proprioceptive or motor) signals, and that drift patterns systematically bias this compensatory mechanism. These mechanisms may be revealed by utilizing static visual patterns that give rise to the peripheral drift illusion, but remain undetected with other patterns. Accordingly, the peripheral drift illusion is of unique value for examining processes of perceptual stabilization

    Opening a new window to other worlds with spectropolarimetry

    Get PDF
    A high level of diversity has already been observed among the planets of our own Solar System. As such, one expects extrasolar planets to present a wide range of distinctive features, therefore the characterisation of Earth- and super Earth-like planets is becoming of key importance in scientific research. The SEARCH (Spectropolarimetric Exoplanet AtmospheRe CHaracerisation) mission proposal of this paper represents one possible approach to realising these objectives. The mission goals of SEARCH include the detailed characterisation of a wide variety of exoplanets, ranging from terrestrial planets to gas giants. More specifically, SEARCH will determine atmospheric properties such as cloud coverage, surface pressure and atmospheric composition, and may also be capable of identifying basic surface features. To resolve a planet with a semi major axis of down to 1.4AU and 30pc distant SEARCH will have a mirror system consisting of two segments, with elliptical rim, cut out of a parabolic mirror. This will yield an effective diameter of 9 meters along one axis. A phase mask coronagraph along with an integral spectrograph will be used to overcome the contrast ratio of star to planet light. Such a mission would provide invaluable data on the diversity present in extrasolar planetary systems and much more could be learned from the similarities and differences compared to our own Solar System. This would allow our theories of planetary formation, atmospheric accretion and evolution to be tested, and our understanding of regions such as the outer limit of the Habitable Zone to be further improved.Comment: 23 pages, accepted for publication in Experimental Astronom

    Linear Rashba Model of a Hydrogenic Donor Impurity in GaAs/GaAlAs Quantum Wells

    Get PDF
    The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Combining Anomaly and Z' Mediation of Supersymmetry Breaking

    Full text link
    We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', with mass in the range of several TeV. Discovering and studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Nucleotide Polymorphisms in the Canine Noggin Gene and Their Distribution Among Dog (Canis lupus familiaris) Breeds

    Get PDF
    Noggin (NOG) is an important regulator for the signaling of bone morphogenetic proteins. In this study, we sequenced the complete coding sequence of the canine NOG gene and characterized the nucleotide polymorphisms. The sequence length varied from 717 to 729 bp, depending on the number of a 6-bp tandem repeat unit (GGCGCG), an insertion that has not been observed in other mammalian NOG genes investigated to date. It results in extensions of (Gly–Ala)3–5 in the putative NOG protein. To survey the distribution of these tandem repeat polymorphisms, we analyzed 126 individuals in seven dog breeds. We identified only three alleles: (GGCGCG)3, (GGCGCG)4, and (GGCGCG)5. Although the allele frequencies were remarkably different among the breeds, the three alleles were present in all seven of the breeds and did not show any deviation from Hardy–Weinberg equilibrium

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    corecore