459 research outputs found
Neuroimaging of serotonin transporters in post-stroke pathological crying
Pathological crying (PC) is a neuropsychiatric disorder characterized by an excessive tendency towards crying after brain damage. To elucidate the role of serotonin neurotransmission for PC, a pilot study was performed using single photon emission computed tomography with [123I]β-CIT to estimate central (midbrain/pons and thalamus/hypothalamus) serotonin transporter (SERT) densities in 15 stroke patients who did or did not have PC. SERT binding ratios in midbrain/pons were significantly lower in the PC subgroup
WHAM Observations of H-alpha Emission from High Velocity Clouds in the M, A, and C Complexes
The first observations of the recently completed Wisconsin H-Alpha Mapper
(WHAM) facility include a study of emission lines from high velocity clouds in
the M, A, and C complexes, with most of the observations on the M I cloud. We
present results including clear detections of H-alpha emission from all three
complexes with intensities ranging from 0.06 R to 0.20 R. In every observed
direction where there is significant high velocity H I gas seen in the 21 cm
line we have found associated ionized hydrogen emitting the H-alpha line. The
velocities of the H-alpha and 21 cm emission are well correlated in every case
except one, but the intensities are not correlated. There is some evidence that
the ionized gas producing the H-alpha emission envelopes the 21 cm emitting
neutral gas but the H-alpha "halo", if present, is not large. If the H-alpha
emission arises from the photoionization of the H I clouds, then the implied
Lyman continuum flux F_{LC} at the location of the clouds ranges from 1.3 to
4.2 x 10^5 photons cm^{-2} s^{-1}. If, on the other hand, the ionization is due
to a shock arising from the collision of the high-velocity gas with an ambient
medium in the halo, then the density of the pre-shocked gas can be constrained.
We have also detected the [S II] 6716 angstrom line from the M I cloud and have
evidence that the [S II] to H-alpha ratio varies with location on the cloud.Comment: 32 pages, 18 figures, to appear in ApJ (Sept. 10, 1998
Detection of Cold Atomic Clouds in the Magellanic Bridge
We report a detection of cold atomic hydrogen in the Magellanic Bridge using
21-cm absorption spectroscopy toward the radio source B0312-770. With a column
density of N_HI=1.2E20 cm^-2, a maximum absorption optical depth of tau=0.10
and a maximum 21-cm emission brightness temperature of 1.4 K, this line of
sight yields a spin temperature, T_s, between 20 K and 40 K. H I 21-cm
absorption and emission spectroscopy toward 7 other low column density
sightlines on the periphery of the LMC and SMC reveal absorption toward one
additional background radio source behind the SMC with tau=0.03. The data have
typical sensitivities of sigma_tau=0.005 to 0.070 in absorption and
sigma_{T_B}=0.03 K in emission. These data demonstrate the presence of a cold
atomic phase which is probably accompanied by molecular condensations in the
tenuous interstellar medium of the Bridge region. Young OB stars observed in
the Magellanic Bridge could form "in situ" from these cold condensations rather
than migrate from regions of active star formation in the main body of the SMC.
The existence of cold condensations and star formation in the Magellanic Bridge
might be understood as a small scale version of the mechanism that produces
star formation in the tidal tails of interacting galaxies.Comment: 25 pages, uses AASTeX and psfig; Accepted for Publication in the
Astronomical Journa
An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud
The local correlation between far-infrared (FIR) emission and radio-continuum
(RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales
from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc.
The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is
shown to be greatest in the most active star forming regions with a power law
slope of ~1.14 indicating that the RC emission increases faster than the FIR
emission. The slope of the other regions and the SMC are much flatter and in
the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the
regions which range from 0.5 to 0.95. The thermal fraction of the RC emission
alone can provide the expected FIR/RC correlation. The results are consistent
with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray
electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s
appear to escape the SMC so readily, the results here may not provide support
for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure
The scattering of SH waves by a finite crack with a superposition based diffraction technique
The problem of diffraction of cylindrical and plane SH waves by a finite crack is revisited -- We construct an approximate solution by the addition of independent diffracted terms -- We start with the derivation of the fundamental case of a semi-infinite crack obtained as a degenerate case of generalized wedge -- This building block is then used to compute the diffraction of the main incident waves -- The interaction between the opposite edges of the crack is then considered one term at a time until a desired tolerance is reached -- We propose a recipe to determine the number of required interactions as a function of frequency -- The solution derived with the superposition technique can be applied at low and high frequencie
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Mitochondrial complex I and cell death: a semi-automatic shotgun model
Mitochondrial dysfunction often leads to cell death and disease. We can now draw correlations between the dysfunction of one of the most important mitochondrial enzymes, NADH:ubiquinone reductase or complex I, and its structural organization thanks to the recent advances in the X-ray structure of its bacterial homologs. The new structural information on bacterial complex I provide essential clues to finally understand how complex I may work. However, the same information remains difficult to interpret for many scientists working on mitochondrial complex I from different angles, especially in the field of cell death. Here, we present a novel way of interpreting the bacterial structural information in accessible terms. On the basis of the analogy to semi-automatic shotguns, we propose a novel functional model that incorporates recent structural information with previous evidence derived from studies on mitochondrial diseases, as well as functional bioenergetics
Innate Immune Activation in Intestinal Homeostasis
Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation
Loss of thalamic serotonin transporters in early drug-naïve Parkinson’s disease patients is associated with tremor: an [123I]β-CIT SPECT study
In vitro studies revealed serotonin transporter (5-HTT) decline in Parkinson’s disease (PD). Yet, few studies investigated thalamic 5-HTT in vivo and its effect on PD heterogeneity. We analyzed thalamic [123I]β-CIT binding (mainly reflecting 5-HTT binding) in 32 drug-naïve PD patients and 13 controls with SPECT. Twenty-six patients were examined twice (17 months apart). Based on UPDRS scores, we identified subgroups of patients with moderate/severe tremor (PDT) and without tremor (PDWT) at the time of clinical diagnosis. Additionally, depressive symptoms were evaluated using the Beck Depression Inventory (BDI) at baseline. Mean thalamic specific to non-specific [123I]β-CIT binding ratio was lower in patients when compared to controls, and further decreased during follow-up. At baseline, average thalamic ratio was significantly lower in the PDT than in the PDWT subgroup. No correlation was found between BDI scores and thalamic binding ratios. Our findings show decline of [123I]β-CIT binding to thalamic 5-HTT in PD and its possible contribution to tremor onset
- …