43 research outputs found

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 14 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formatio

    SO2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements

    Get PDF
    SO2 fluxes emitted by Stromboli during the 27th February – 2nd April 2007 effusive eruption were regularly measured both by an automatic network of scanning ultraviolet spectrometers and by traverse easurements conducted by boat and helicopter. The results from both methodologies agree reasonably well, providing a validation for the automatic flux calculations produced by the network. Approximately 22,000 tonnes of SO2 were degassed during the course of the 35 day eruption at an average rate of 620 tonnes per day. Such a degassing rate is much higher than that normally observed (150-200 t/d), because the cross-sectional area occupied by ascending degassed magma is much greater than normal during the effusion, as descending, degassed magma that would normally occupy a large volume of the conduit is absent. We propose that the hydrostatically controlled magma level within Stromboli’s conduit is the main control on eruptive activity, and that a high effusion rate led to the depressurisation of an intermediate magma reservoir, creating a decrease in the magma level until it dropped beneath the eruptive fissure, causing the rapid end of the eruption. A significant decrease in SO2 flux was observed prior to a paroxysm on 15th March 2007, suggesting that choking of the gas flowing in the conduit may have induced a coalescence event, and consequent rapid ascent of gas and magma that produced the explosion

    Installazione di un radiometro nell'area sommitale del vulcano Etna

    Get PDF
    Le tecniche di telerilevamento satellitare e da terra per la stima della temperatura di anomalie termiche delle superfici vulcaniche, della loro variazione nel tempo e per individuare attività parossistiche o l’inizio di una fase di colate di lava, sono ormai entrate a far parte della sorveglianza e del monitoraggio vulcanologico [es. Francis, 1979; Geraci et al., 1985; Lombardo et al., 2011; Spampinato et al., 2011]. I sensori in una banda spettrale dell’infrarosso quali radiometri e telecamere termiche, utilizzati in prossimità di bocche eruttive, hanno fornito cospicue quantità di dati di temperatura della superficie di corpi magmatici (colate laviche, laghi di lava, duomi lavici), plume vulcanici, fumarole, registrati a distanza di totale sicurezza [Spampinato et al., 2011]. In particolare, i radiometri, sia portatili che installati in stazioni permanenti, oltre che fornire dati da confrontare con misure geochimiche, permettono l’acquisizione di dati di temperatura ad elevata frequenza, tali da essere messi in relazione con le misure derivate da osservazioni geofisiche quali ad esempio il tremore sismico [es. Harris e Ripepe, 2007; Branan et al., 2008].In questo lavoro si descrivono i dettagli dell’installazione di una stazione radiometrica collocata nell’area sommitale dell’Etna in zona Belvedere, nel sito già utilizzato da una stazione multiparametrica (con sensori sismici e infrasonici) e denominato EBEL. Si descrivono anche la metodologia di trasmissione dati in continuo, il trattamento del dato convertito in temperatura apparente nel campo di vista del radiometro, la visualizzazione in tempo quasi reale del dato e la sua diffusione tramite WEB

    Degassing behavior of Mt. Etna volcano (Italy) during 2007-2008, inferred

    Get PDF
    Studies on volcanic degassing have recently shown the important role of volatile release from active volcanoes in understanding magmatic processes prior to eruptions. Here we present and discuss the evolution of magmatic degassing that preceded and accompanied the 2008 Mt. Etna eruption. We tracked the ascent of magma bodies by high-temporal resolution measurements of SO2 emission rates and discrete sampling of SO2/HCl and SO2/HF molar ratios in the crater plume, as well as by periodic measurement of soil CO2 emission rates. Our data suggest that the first signs of upward migration of gas-rich magma before the 2008 eruption were observed in June 2007, indicated by a strong increase in soil CO2 efflux followed by a slow declining trend in SO2 flux and halogens. This degassing behavior preceded the mid-August 2007 summit activity culminated with the September 4th paroxysmal event. Five months later, a new increase in both soil CO2 and SO2 emission rates occurred before the November 23rd paroxysm, to drop down in late December. In the following months, geochemical parameters showed high variability, characterized by isolated sudden increases occurred in early December 2007 and late March 2008. In early May soil CO2, SO2 emission rates and S/Cl molar ratio gradually increased. Crater degassing peaked on May 13th marking the onset of the eruption. Eruptive activity was accompanied by a general steady-state of SO2 flux characterized by two main degassing cycles. These cycles preceded explosive activity at the eruptive vents, indicating terminal new-arrival of deep gas-rich magma bodies in the shallow plumbing system of Mt Etna. Conversely, halogens described a slight increasing trend till the end of 2008. These observations suggest an impulsive syn-eruptive dynamics of magma transfer from depth to the surface. Differently from the SO2 emission rates, the S/Cl ratio and the soil CO2 efflux values showed an increasing trend from mid-April to mid-July 2008, indicating steady-increasing input of deeper, gas-rich magma. Since August, geochemical parameters decreased, suggesting that new magma has not arrived from depth. According to our interpretation, both the CO2 efflux and the S/Cl ratio increases observed in early November may indicate a new input of fresh magma form depth. Finally, the estimated volume of degassing magma showed substantial equilibrium between degassed and erupted magma suggesting an “eruptive” steady-state of the volcano

    Installation and first results from a remote-controlled automatic FTIR spectrometer on

    Get PDF
    The first successful FTIR measurements on Stromboli were conducted in 2000, producing remarkable insights into the rapidly changing dynamics of degassing and explosive processes. The ability of the FTIR to simultaneously measure all the major species contained in volcanic gas emissions (H2O, CO2, SO2, HCl, HF, CO, OCS, SiF4) at high temporal resolution, when combined with the automatic SO2 flux monitoring system already installed on Stromboli could allow fluxes of all these gases to be determined accurately and automatically. In order to achieve this objective, we have designed a remotely controlled FTIR-scanner system that allows directional control over the field of view of the spectrometer. The system is planned for installation in June/July 2008, and we will present the first results from the system in this paper
    corecore