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SO2 flux from Stromboli during the 2007 eruption: results from the FLAME network and traverse 
measurements 
 
Burton M.R., Caltabiano T., Murè F., Salerno G. and Randazzo D. 
 
Istituto Nazionale di Geofisica e Vulcanologia, Catania, Italy 
 
Abstract 
 
SO2 fluxes emitted by Stromboli during the 27th February – 2nd April 2007 effusive eruption were 

regularly measured both by an automatic network of scanning ultraviolet spectrometers and by 

traverse measurements conducted by boat and helicopter. The results from both methodologies 

agree reasonably well, providing a validation for the automatic flux calculations produced by the 

network. Approximately 22,000 tonnes of SO2 were degassed during the course of the 35 day 

eruption at an average rate of 620 tonnes per day. Such a degassing rate is much higher than that 

normally observed (150-200 t/d), because the cross-sectional area occupied by ascending degassed 

magma is much greater than normal during the effusion, as descending, degassed magma that would 

normally occupy a large volume of the conduit is absent. We propose that the hydrostatically 

controlled magma level within Stromboli’s conduit is the main control on eruptive activity, and that 

a high effusion rate led to the depressurisation of an intermediate magma reservoir, creating a 

decrease in the magma level until it dropped beneath the eruptive fissure, causing the rapid end of 

the eruption. A significant decrease in SO2 flux was observed prior to a paroxysm on 15th March 

2007, suggesting that choking of the gas flowing in the conduit may have induced a coalescence 

event, and consequent rapid ascent of gas and magma that produced the explosion.  

 
 
Introduction 
 
Stromboli is the northernmost island of the Aeolian Archipelago, 100 km off the north coast of 

Sicily. The island is a 924 m tall stratocone volcano, which rests  on the Tyrrhenian Sea floor at 

~2000m below sea level. For ~2000 years, Stromboli has been characterized by persistent eruptive 

activity at the summit craters [e.g., Mercalli, 1881; Barberi et al., 1974; Rosi et al., 2000]. The 

eruptive style, that has become synonymous with the volcano, consists of intermittent explosions of 

incandescent lava fragments, bombs and scoriae, ejected up to a few hundred meters above the 

craters every  ~10-20 minutes [Barberi et al., 1993; Rosi et al., 2000]. This strombolian activity is 

interrupted once or twice per year by larger major explosions, which can deposit material in areas 

where tourists observe the activity. Such explosions can draw from the deeper feeding system of 

Stromboli, producing a blond scoria [Barberi et al., 1993] whose source is poorly crystallised 

magma that during ascent, degassing and crystallisation becomes the black scoria observed during 
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normal explosive activity [Bertagnini et al., 2003]. On longer intervals the persistent eruptive 

activity has been interrupted by effusive eruptions [Barberi et al., 1993], the last of which occurred 

in 2002/03 [Landi et al., 2006]. The most intense explosions are observed rarely, and are termed 

‘paroxysms’ in order to distinguish from the more frequent major explosions. The 5th April 2002/03 

and 15th March 2007 explosions have been classed as paroxysmal due to the wide area covered by 

fall deposits.  

 

The steady-state explosive activity is driven by the intermittent rise and bursting of gas slugs rising 

separately from their source melt 2-3km beneath the summit craters [Ripepe et al., 2001; Chouet et 

al., 2003, Burton et al., 2007a].  Allard et al. [1994] estimated that explosive degassing is a minor 

contributor to the total gas flux, which is dominated by quiescent degassing. 

 

Sulphur dioxide (SO2) is one of the main magmatic volatile species released from Stromboli. SO2 

possesses a strong absorption band in the ultraviolet, measurable using scattered sunlight. For these 

reasons SO2 is probably the most frequently measured volcanic species, and its study provides 

helpful indications on magma transfer processes in the shallow part of the volcano [e.g., Allard et 

al., 1994; Caltabiano et al., 1994; Sutton et al. 2001; Fisher et al. 2002; Badalamenti et al., 2004, 

Burton et al., 2007]. Knowledge of the original sulphur content of Strombolian magma allows 

determination of the mass of magma required to produce observed SO2 fluxes, and several papers 

have used this approach to constrain the magma supply rate at Stromboli (Stoiber et al, 1983, Allard 

et al., 1994, Francis et al., 1993, Burton et al., 2007b).  

 

SO2 flux measurements have been performed sporadically on Stromboli using a Correlation 

Spectrometer (COSPEC) since 1975. These measurements demonstrate SO2 fluxes fluctuated 

between ~ 130 - 1,500 tons per day (t d-1), with mean values of ~300 t d-1 [Malinconico 1987; 

Allard et al., 1994; Weibring et al., 1998, 2002; Salerno et al., 2003]. The 2002/03 eruption of 

Stromboli (Landi et al., 2006) was carefully monitored using mini-DOAS spectrometers (Burton et 

al., submitted, Galle et al., 2003) and prompted the installation of a permanent network of 

automatic scanning ultraviolet spectrometers (Burton et al., 2004). This network has been fully 

operational since March 2004.  

 

On 27th February 2007 a new effusive eruption began on Stromboli, after a period of elevated 

explosivity at the summit craters. The eruption ceased on the 2nd April 2007. During the eruption, 

and for 10 days after the cessation of activity, measurements of SO2 flux were conducted with a 
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mini-DOAS spectrometer in traverse mode, via boat and helicopter. These measurements were 

made alongside the scanning network measurements, that were performed before, during and after 

the eruption. In this paper we present and interpret the results of these SO2 flux measurements.  

 

Methods 

 

Traverse measurements of SO2 flux were collected during the 2007 Stromboli eruption using an 

Ocean Optics USB2000 spectrometer carried under the plume via boat whilst recording position 

with a GPS sensor. Data reduction was performed with a custom program which fitted the measured 

ultraviolet spectrum with a forward model spectrum in real-time during data collection, allowing the 

time series of recorded SO2 column amounts to be displayed during data acquisition. SO2 flux was 

determined by geometrically correcting the measured SO2 amounts such that they represented a 

cross-section orthogonal to the wind-direction, integrating the cross-section and multiplying with 

wind speed.  

 

After the 2002/03 eruption of Stromboli a network of scanning ultraviolet spectrometers was 

installed on the island, with the objective of automatically measuring SO2 fluxes from the summit 

craters. The FLux Automatic MEasurement (FLAME) network (Burton et al., 2004) began 

operation in 2004, with the installation of 4 scanners around Stromboli (see figure 1), connected via 

WiFi network to the main observatory in San Vincenzo. Each scanner consists of a Lantronix 

ethernet to serial convertor, a custom-made circuit board, a stepper motor driving a rotating head 

and an Ocean Optics USB2000 spectrometer, connected via 10cm fibre optic cable to a telescope 

that views a 45° angle ultraviolet-coated mirror in the rotating head. The entrance aperture was 

protected with a Hoya U330 filter to remove longer wavelengths.  

 

The spectrometer was optimised for maximum optical throughput, with a wide slit of 500 microns, 

and a 4800 groove/cm grating tuned to 290-380 nm. This produced an instrument lineshape with 

1.1nm full width at half maximum height for a monochromatic source. The telescope produced a 

field of view of 5mrad. The circuit board consisted of a microcontroller, programmed to allow 

control of either the stepper motor or the spectrometer. In this way, a control program running on a 

remote PC directly commands the scanner to alternately move the motor and then collect a 

spectrum.  
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The integration time and number of spectrum coadditions are specified by the control program. The 

stepper motor has 6000 steps in one rotation giving an angular resolution of 1mrad. Each 

measurement from a scanner consists of one dark spectrum, collected when viewing downwards, 

followed by a user-defined number of spectra collected between a user-defined angle range. The 

nominal setting for the FLAME (Flux Automatic Measurement) network on Stromboli was 60 

spectra collected over 180°, from one horizon to the other. 

 

Data reduction to SO2 slant column amounts was performed using a custom-written program that 

utilised an artificial reference spectrum rather than a measured reference spectrum. Salerno et al. 

[2008] describe both the retrieval and its validation in detail. The main advantage of using an 

artificial reference spectrum is that retrieved SO2 amounts are in absolute units, even if the entire 

arc of sky visible to the instrument contains volcanic gas; a fairly common occurence on Stromboli. 

Scans are converted in real-time to SO2 slant column amounts, before being passed to a flux 

calculation program. 

 

Flux determination from a network of ultraviolet scanners is a challenge. Many factors come into 

play, not all of which can be independently measured; the geometry and location of the plume, the 

wind speed, multiple scattering effects, in-scattering of light that has not passed through the plume. 

The original design of the network planned for two lines of measurements by paired scanners, in 

order to accurately define the plume height. This strategy was successfully used on Montserrat, 

BWI, (Edmonds et al., 2003) aided by a stable prevailing wind direction. On Stromboli, 

unfortunately, stable wind directions are a rarity. We found that the frequency of measurements in 

which only one station observed the complete plume and its pair observed only a partial side of the 

plume was high, and that well-constrained measurments were relatively rare for both paired 

scanners. Given the focus on monitoring we decided that the priority should be to maximise the 

probability of a plume measurement; changes in SO2 flux are often of an order of magnitude, 

allowing us to accept the cost of slightly lower precision if there is a gain in the number of days we 

successfully constrain the SO2 flux. This led us to adopt a new measurement strategy in which the 

flux was calculated using single stations, and the plume height determined by wind speed. Direct 

observations of the volcanic plume showed that when wind speed is low the plume can rise 100-

200m above the crater terrace. In high winds the plume could be observed to be grounding. We 

used a combination of empirical comparison with traverse measurements and observations of pairs 

of scans from different stations that observed the same plume at various windspeeds to deduce a 

relationship between plume height and wind speed, with height decreasing as wind speed increased 
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(see table 1). This then allowed us to greatly increase the frequency of measurements; even this 

strategy does not produce 100% coverage, on approximately 10% of days no plume is visible to the 

network, usually because the wind direction is unfavourable or because the plume has grounded due 

to high winds. The orientation of the scanners was changed in order be pointed directly away from 

the summit craters, such that when the plume was directly overhead scans were perpendicular to the 

plume direction.. Static measurements of SO2 slant column amounts require projection onto either 

cartesian or polar coordinates in order to determine a cross-section. We found that using cartesian 

coordinates induced large randome errors, particularly when the plume was close to the horizion, 

due to the large projected distance between each slant column measurement. To avoid this problem 

we project the slant column amounts onto a polar coordinate geometry in which the radial distance 

to the plume is determined using the derived plume height and angle of maximum SO2 

concentration. This distance is then fixed for the whole scan and a cross-section can be readily 

determined.  

 

From 2004 until November 2006 an anenometer at Vancori recorded windspeed data. From 

December 2006 until 25th March 2007 this anenometer malfunctioned, and we instead used data 

from the LAMI model (Limited Area Model Italy). This is a mesoscale forecast model nested in the 

European Centre for Medium-Range Weather Forecasts (ECMWF, http://www.ecmwf.int/). The 

model is calculated on a 7-km grid spacing with 35 vertical terrain-following levels every 3 hours, 

and produces a 48-h forecast once a day (Doms and Shattler, 1999; Cacciamani et al., 2002; 

http://www.cosmo-model.org). After 25th March a new anenometer was installed at Pizzo, on the 

north side of the summit, which is currently being used to provide wind data. Comparing the time 

series of measured winds with forecast winds calculated with LAMI shows a reasonable agreement 

in capturing the general trends in variation of the wind speed, but direct comparison shows a 

relatively poor correlation (see figure 2). It is clear that plume speed determinations remain the 

greatest source of uncertainty in SO2 flux measurements; whilst typical errors for retrieved SO2 

amounts are up to 10%, fluxes have a higher estimated error of 25%. Error bars on network data 

presented here represent the standard deviation around a mean of all measurements during one day. 

 

Results 

 

In figure 3 we present the results from the Stromboli FLAME network for the period 1st August 

2006 until 31st October 2007. A major explosion was recorded with the INGV seismic network on 

15th December 2006, preceded by a peak in SO2 flux. There is a clear increase in the SO2 flux 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

visible from the beginning of 2007 until just before the eruption onset, when the SO2 flux drops. 

During the eruption the SO2 flux is highly elevated, averaging 700 t/d, about four times normal 

degassing rates. After the cessation of effusive activity on 2nd April the SO2 flux decreased until 17th 

April, before a secondary burst of SO2 was observed, which lasted until 25th May. After that date 

SO2 fluxes maintained an average value slightly higher than the preeruptive level (220 t/d compared 

with 150 t/d), with some peaks up to 400 t/d. A total of 24,600 tonnes of SO2 were released during 

the course of the eruption. 

In figure 4 SO2 fluxes measured ~contemporaneously with the FLAME network and traverses (both 

helicopter- and boat-borne) are plotted together and against one another. The general trends are 

comparable in the two time series; magnitudes are also in good agreement between the two time 

series. Errors due to plume height determination via the empirical wind speed approach also 

contribute to the discrepancies. Independently collected traverse data can therefore serve as a 

validation of our plume height derivation from wind speed approach. 

Of particular note are the SO2 flux data collected on 14th and 15th March 2007, the day before and 

of the paroxysm. On 14th March two traverse measurements were conducted,at 09:00 and 15:00,  

producing fluxes of 950 and 920 respectively (all times GMT). On 15th March the plume was 

measured at 08:00 by the FLAMES network to be 832 t/d; this was followed by traverse 

measurements at at 09:40 (720 t/d) and at 15:30 (450 t/d), see figure 5. The 15th March 2007 

paroxysm occurred at 20:03 less than 5 hours after the last traverse measurement. Thus we clearly 

observe a decreasing trend  in SO2 flux in the hours preceding the paroxysmal event.  

 

 

Discussion 

 

The basis for the interpretation of SO2 flux variations during the 2007 eruption of Stromboli comes 

in part from the conceptual model of magma circulation proposed by Burton et al. (2007), in which 

upflowing, degassing magma produces percolation pathways along which gas can readily flow at 

faster ascent velocity than the ascending magma. Degassing magma is surrounded by an annulus of 

viscous, degassed magma, descending back down the conduit. This model’s main advantages are 

explaining the relatively low vesicularity of eruption products, which would be much higher if gas 

and magma ascended together, and in constraining the relative velocity of degassed and degassing 

magmas that, together with gas flux data, allow a quantitative constraint to be placed on the 

diameter of the feeding conduit. The effect of an effusive eruption on this magma circulation is to 

remove the source of degassed magma; it erupts instead of flowing back down the conduit. This 
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removal has the effect of effectively increasing the diamater of the conduit available to ascending 

magma. Burton et al. (GRL, in revision) proposed this model to explain the increased SO2 flux 

observed during the 2002/03 eruption of Stromboli (Ripepe et al., 2005). They also proposed that 

one of the main controls on eruptive activity is the level of magma within the conduits; both the 

2002/03 and 2007 eruptions were triggered when the level of magma was high in the volcanic 

conduits, producing vigorous explosive activity at the surface, and pressurising the superficial crater 

structures until failure occurred and lava could pour out (Burton et al., in press). The magma level is 

controlled by the balance between the pressure of the magma reservoir and the weight of magma in 

the conduit. The lower density of magma compared with host rock accounts for the elevated height 

of the magma column. Given this, the main controls on magma levels are magma density and 

reservoir pressure. It is clear that removal of degassed magma from the conduit during an effusive 

eruption not only increases the area available for ascending magma, but also decreases the average 

density of magma within the conduit system, a process that will augment the longer the effusion 

continues. The effect of the decrease in density is to increase the hydrostatic equilibrium level of 

magma in the conduit, however, if the conduit is breached then the effect is to sustain a prolonged 

effusive eruption, that can continue until the magma reservoir depressurises. 

Observations reported by Bonaccorso et al., (2008) are fully consistent with this conceptual model. 

They observed a deflationary response from an intermediate depth of 2-3km beneath sea level (a 

zone which has previously been highlighted as a storage depth by petrological studies (Francalanci 

et al., 2005)), contemperaneously with the start of the lava effusion. The long-term stability of 

Stromboli’s explosive activity over many hundreds of years strongly suggests a very stable magma 

input rate. We propose that the observed deflation was therefore a response to a larger exiting 

magma flux from the intermediate reservoir compared with that entering the reservoir from below. 

 

The 2007 eruption of Stromboli was much briefer than its 2002/03 eruption, lasting only 35 days 

compared with almost 6 months. The probable reason for this difference is that the magma removal 

rate was slightly lower in the 2002/03 eruption, as evidenced by a lower SO2 flux compared with 

2007 and volcanologically by a higher effusion rate in 2007, evidenced by lava flowing into the sea 

for at least 10 days after the eruption onset. A broad conclusion of this discussion would therefore 

be that low effusion rate eruptions at Stromboli may well have much longer durations than high 

effusion rate eruptions. 
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The high degassing rate observed during the eruption evidences two coupled processes; (i) a wider 

area of ascending magma due to the lack of degassed magma; (ii) deeper extension of permeable 

networks of vesicles (Burton et al., 2007b), due to the reduced average density of magma in the 

column. Extension of the permeable network to greater depths  allows a larger volume of magma to 

contribute to the gas emission observed at the surface, however, if that gas supply is reduced due to 

a decompression of the deeper feeding system (as evidenced by the observed deflation during the 

eruption, Bonaccorso et al., 2008) then the permeable network may become unstable. We speculate 

that rapidly reducing gas flow through a permeable bubble network may induce a collapse of that 

network and production of localised zones of highly vesiculated magma that may coalesce into gas 

slugs. These may then rise rapidly from depth and induce the observed paroxysm.  

 

We propose therefore that the decrease in SO2 flux on 15th March prior to the paroxysm was an 

indicator of the collapse of the permeable network, that produced stranded vesicle-rich pockets of 

magma at depth that could then coalesce and produce fast rising gas slugs, leading to the explosion.  

 

Finally, interpolating the SO2 flux data to include the few days when data was not collected allows 

us to estimate the total amount of gas released during the course of the 35 day effusive eruption 

from 27th February to 2nd April 2007. This total is 24,600 tonnes of SO2, released at an average rate 

of appoximately 700 t/d. Assuming complete degassing of magma that originally contained 0.2 wt% 

S (Bertagini et al., 2003) each tonne of released SO2 implies the complete degassing of 250 tonnes 

of magma, and therefore our observations imply degassing of 250 x 22,000 = 5.5x106 tonnes of 

magma. Landi et al. [this issue] measured the vesicularity of lavas erupted during the 2007 eruption 

and found an average vesicularity of 14% ± 3% for eight samples, utiltising a methodology that 

could not accurately measure vesicles with diameter <50 micron. Assuming a degassed magma 

density of 2700 kgm-3, this vesicularity would produce lava with an average density of 2320 kgm-3. 

If all the magma that degassed was also erupted then the effusion would therefore have produced 

5.5x106 x 1000 / 2320 = 2.37 million m3 of vesiculated lavas. In order to compare this degassed 

lava volume with measurements of the eruption deposit volume we must take account of two 

additional factors. Firstly, the volume of degassed magma resident in the shallow plumbing system 

must be included, as this flowed out at the start of the eruption. Estimates from the 2002/03 indicate 

that ~2 million m3 of lava effusion was sourced by the initial outflow of resident degassed magma 

[Landi et al., 2006]. Secondly, during emplacement lava flows will contain large scale voids, due to 

the compound nature of the deposits, increasing the apparent volume compared with the net ~4.4 

million m3 calculated by summing degassed lava and resident degassed magma. Marsella et al., 
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(this issue) report an erupted deposit volume of 11 million m3, approximately double that 

determined here. This discrepancy suggests that either voids occupy ~60% of the deposit or that 

much more lava was erupted than was degassed. 

 

We note that while SO2 fluxes increased rapidly at eruption onset, the return to background 

degassing levels took much longer. This is probably due to a slow resumption of the flow of sinking 

degassed magma as the shallow plumbing system refilled. The reduced flow rate of degassed 

magma allowed a larger than normal cross-sectional area to be occupied with ascending magma, 

sustaining higher gas fluxes for several months after the cessation of eruptive activity. 

 

Conclusions 

 

The 2007 eruption of Stromboli allowed us to test both the FLAME network and our theories of 

magma dynamics at Stromboli during both quiescent and eruptive periods. Measurements of SO2 

flux conducted with the network agree reasonably well with measurements made with traditional 

traverse methods. The elevated SO2 fluxes observed during the eruption are the result of an 

effective increase in the area of the conduit occupied by ascending magma, an increase afforded by 

the absence of degassed magma that is erupted instead of sinking slowly back down the conduit, as 

is normally the case. We propose that the higher output rate of magma from an intermediate magma 

reservoir outpaced the long term input rate, leading to deflation and rapid cessation of effusive 

activity. The level of magma within the conduit system exerts a dominant control on the nature of 

volcanic activity at Stromboli, and is controlled by the balance between the pressure within the 

magma reservoir and the weight of the magma column supported by that pressure. Reservoir 

pressure and magma density are therefore critical parameters in understanding Stromboli’s 

behaviour. The decrease in SO2 flux preceding the 15th March 2007 paroxysm may have catalysed 

the collapse of gas percolation pathways into a major coalescence event, powering the rapid ascent 

of gas and magma from depth that caused the paroxysm. Degassing measurements, combined with 

geophysical studies, can give unique insights into Stromboli’s behaviour. The capability of the 

FLAME network to automatically monitor SO2 flux is therefore a major step forward in our ability 

to comprehend Stromboli.  
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Figure Captions 

 

Figure 1: Image of Stromboli volcano viewed from the Northeast with ultraviolet scanning stations 

indicated, as well as WiFi radio communication paths. COA is the main observatory building on 

Stromboli where the PC which directly controls the UV scanners is kept. Meteorological data 

reported here was measured at Pizzo. The island is approximately 5km long (NE-SW) and 3km 

wide (NW-SE). 
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Figure 2: Comparison of wind speed data from LAMI model and measurements at Pizzo, (a) Time 

series showing the trends in both series (b) The two datasets plotted against one another.  

Figure 3: Average daily SO2 flux from Stromboli, measured with the FLAME network. Error bars 
indicate the standard deviation of measurements collected during each day. Shaded area indicates 
the 2007 eruption.  
 
Figure 4: Comparison of SO2 flux data collected with the FLAMES network and traverse methods: 
(a) Time series of SO2 fluxes collected utiltising both methodologies; (b) Network flux plotted 
against traverse flux. Each network data point is the flux measured closest in time to the traverses. 
Error bars are ±25%.  
 
Figure 5: Variation of SO2 flux measured with traverses and the network on 15th March, prior to the 
paroxysm at 20:03 GMT. 
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 1: Plume height estimates from wind speeds 

 

Wind Speed (ms-1) Plume Height (m) 

2 900 

4 700 

6 500 

8 450 

10 300 

15 200 

20 150 

20+ 100 
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