61 research outputs found

    Experimental microstylolites in quartz and modelling of natural stylolitic structures

    Get PDF
    International audienceExperimental microstylolites have been observed at stressed contacts between quartz grains loaded for several weeks in the presence of an aqueous silica solution, at 350 8C and 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM images yielded a digital elevation model of the surface of the microstylolites. Fourier analyses of these microstylolites reveal a self-affine roughness (with a roughness exponent H of 1.2). Coupled with observations of close interactions between dissolution pits and stylolitic peaks, these data illustrate a possible mechanism for stylolite formation. The complex geometry of stylolite surfaces is imposed by the interplay between the development of dissolution peaks in preferential locations (fast dissolution pits) and the mechanical properties of the solid-fluid-solid interfaces. Simple mechanical modeling expresses the crucial competition that could rule the development of microstylolites: (i) a stress-related process, modeled in terms of the stiffness of springs that activate the heterogeneous dissolution rates of the solid interface, promotes the deflection. In parallel, (ii) the strength of the solid interface, modeled in terms of the stiffness of a membrane, is equivalent to a surface tension that limits the deflection and opposes its development. The modeling produces stylolitic surfaces with characteristic geometries varying from conical to columnar when both the effect of dissolution-rate heterogeneity and the strength properties of the rock are taken into account. A self-affine roughness exponent (Hz1.2) measured on modeled surfaces is comparable with natural stylolites at small length scale and experimental microstylolites

    Experimental stylolites in quartz and modeled application to natural structures.

    Get PDF
    Experimental stylolites have been observed at stressed contacts between quartz grains loaded for a period of several months in presence of aqueous silica solution, at 350°C under 50 MPa of differential stress. Stereoscopic analysis of pairs of SEM images, processed in the same way as earth-surface elevation data gives the stylolites topography. Coupled with observations of closed interactions between dissolution pits and stylolitic peaks, these data illuminate the mechanism of stylolite formation. The complex geometry of stylolite surfaces is imposed by the interplay between the development of dissolution peaks in favored locations (fast dissolution pits) and the mechanical properties of the solid-fluid-solid interfaces. Simple mechanical modeling expresses the crucial competition that could rule the development of stylolites: (i) a stress related process (modeled as the stiffness of springs (N/m3) activates the heterogeneous dissolution rates of the solid interface that promotes the deflection. In parallel, (ii) the strength of the solid interface, modeled as the stiffness of a membrane (N/m) and equivalent to a surface tension) limits the deflection and is opposed to its development. The modeling produces stylolitic surfaces with characteristic geometries that vary from conical to columnar shaped stylolites when both the effect of dissolution-rate heterogeneity and the strength properties of the rock are included

    Combination of OFDM and CDMA for high data rate UWB

    Get PDF
    For Wireless Personal Area Network (WPAN) systems, resource allocation between several users within a piconet and the coexistence of several piconets are very important points to take into consideration for the optimization of high data rate Ultra Wide Band (UWB) systems. To improve the performance of the Multi-Band OFDM (Orthogonal Frequency Division Multiplex) solution proposed by the Multi-Band OFDM Alliance (MBOA), the addition of a spreading component in the frequency domain is a good solution since it makes resource allocation easier and also offers better robustness against channel frequency selectivity and narrowband interference. The Spread Spectrum - Multi-Carrier - Multiple Access (SS-MC-MA) system proposed in this article offers not only the advantages of Multi-Carrier - Coded Division Multiple Access (MC-CDMA) brought by frequency spreading, but also a more effective dynamic resource allocation in a multi-user and multi-piconet context. These improvements are obtained without increasing the complexity of the radio-frequency part compared to the classical MBOA solution

    Nouveaux schémas de réception et décodage pour les systèmes OFDM sans fil avec préfixe cyclique ou zero-padding

    No full text
    PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    Subspace-based blind channel estimation method for MIMO-OFDM systems

    No full text
    • …
    corecore