73 research outputs found

    Dendroscope: An interactive viewer for large phylogenetic trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research in evolution requires software for visualizing and editing phylogenetic trees, for increasingly very large datasets, such as arise in expression analysis or metagenomics, for example. It would be desirable to have a program that provides these services in an effcient and user-friendly way, and that can be easily installed and run on all major operating systems. Although a large number of tree visualization tools are freely available, some as a part of more comprehensive analysis packages, all have drawbacks in one or more domains. They either lack some of the standard tree visualization techniques or basic graphics and editing features, or they are restricted to small trees containing only tens of thousands of taxa. Moreover, many programs are diffcult to install or are not available for all common operating systems.</p> <p>Results</p> <p>We have developed a new program, Dendroscope, for the interactive visualization and navigation of phylogenetic trees. The program provides all standard tree visualizations and is optimized to run interactively on trees containing hundreds of thousands of taxa. The program provides tree editing and graphics export capabilities. To support the inspection of large trees, Dendroscope offers a magnification tool. The software is written in Java 1.4 and installers are provided for Linux/Unix, MacOS X and Windows XP.</p> <p>Conclusion</p> <p>Dendroscope is a user-friendly program for visualizing and navigating phylogenetic trees, for both small and large datasets.</p

    InnateDB: facilitating systems-level analyses of the mammalian innate immune response

    Get PDF
    Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner

    Scenario-based requirements elicitation for user-centric explainable AI

    Get PDF
    Explainable Artificial Intelligence (XAI) develops technical explanation methods and enable interpretability for human stakeholders on why Artificial Intelligence (AI) and machine learning (ML) models provide certain predictions. However, the trust of those stakeholders into AI models and explanations is still an issue, especially domain experts, who are knowledgeable about their domain but not AI inner workings. Social and user-centric XAI research states it is essential to understand the stakeholder’s requirements to provide explanations tailored to their needs, and enhance their trust in working with AI models. Scenario-based design and requirements elicitation can help bridge the gap between social and operational aspects of a stakeholder early before the adoption of information systems and identify its real problem and practices generating user requirements. Nevertheless, it is still rarely explored the adoption of scenarios in XAI, especially in the domain of fraud detection to supporting experts who are about to work with AI models. We demonstrate the usage of scenario-based requirements elicitation for XAI in a fraud detection context, and develop scenarios derived with experts in banking fraud. We discuss how those scenarios can be adopted to identify user or expert requirements for appropriate explanations in his daily operations and to make decisions on reviewing fraudulent cases in banking. The generalizability of the scenarios for further adoption is validated through a systematic literature review in domains of XAI and visual analytics for fraud detection

    Measures in Visualization Space

    Get PDF
    Postponed access: the file will be available after 2021-08-12Measurement is an integral part of modern science, providing the fundamental means for evaluation, comparison, and prediction. In the context of visualization, several different types of measures have been proposed, ranging from approaches that evaluate particular aspects of visualization techniques, their perceptual characteristics, and even economic factors. Furthermore, there are approaches that attempt to provide means for measuring general properties of the visualization process as a whole. Measures can be quantitative or qualitative, and one of the primary goals is to provide objective means for reasoning about visualizations and their effectiveness. As such, they play a central role in the development of scientific theories for visualization. In this chapter, we provide an overview of the current state of the art, survey and classify different types of visualization measures, characterize their strengths and drawbacks, and provide an outline of open challenges for future research.acceptedVersio

    Development of a DNA Barcoding System for Seagrasses: Successful but Not Simple

    Get PDF
    Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL) rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches contribute to the understanding of the morphological plasticity of seagrasses versus genetic differentiation
    corecore