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What google maps can do for biomedical data
dissemination: examples and a design study
Radu Jianu1* and David H Laidlaw2

Abstract

Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for

more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for

large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software

systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types

and formats. This may lead to wasted analysis time and discarding of potentially useful data.

Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data

visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the

development of biological visualizations which have both low-overhead and sufficient expressivity to support the

exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of

biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our

discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a

protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work

with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and

can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those

less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations

introduce design elements that can benefit visualization developers.

Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar

scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and

intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation

demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to

create such visualizations, and five concrete example visualizations.

Keywords: Bioinformatics, Biological visualization, Data dissemination, Regulation networks, Design guidelines

Background
Scientists today have access to many large datasets that

describe biological processes. Advanced systems for visu-

alizing such data exist but have associated costs that

depend on a scientist’s computer abilities and familiar-

ity with the data type and content. Thus, when handed

unfamiliar datasets, researchers need to assess the time

commitment these require and determine whether the
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analysis costs are justified. This scenario poses two limi-

tations. First, researchers must judge a dataset’s relevance

primarily by relying on textual descriptions and analy-

ses provided by the data publisher. This method does not

scale to large datasets where insights depend on a particu-

lar scientific question. Second, datasets deemed tangential

to a user’s research may be discarded because of a low

reward-effort ratio. These two limitations may lead to

wasted analysis time and discarding of potentially useful

data.

Raw datasets are commonly analyzed in one of the

many stand-alone systems for biological data visualization

developed over the past decade. These include software

© 2013 Jianu and Laidlaw; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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packages targeting microarray expression such as Clus-

terview [1], Hierarchical Clustering Explorer (HCE) [2],

and Spotfire [3], systems for pathway and network analysis

like Cytoscape [4], VisANT [5], Ingenuity [6] and Patika

[7], or genome viewers such as Cinteny [8] and Mizbee

[9]. Most such systems are aimed at complex data explo-

ration and analysis and have associated overhead costs

such as deploying, learning and operating the systems,

data formatting, and adjusting parameters to create views.

Alternatively, large organizations and research groups

sometimes choose to distribute data and analysis utilities

as part of browsable web environments (e.g., tools on the

NCBI website, web-based genome viewers). However, tra-

ditional web visualizations of biological data are restricted

to small data volumes, limited visual encodings and

keyhole analyses due to browser limitations [10]. Some

developers overcame browser constraints by making their

systems available as applets or to be run as client appli-

cations directly from websites [4,11]. However, in such

approaches, users must still cope with overheads inherent

to stand-alone applications such as adjusting visualization

parameters, specifying data queries and learning features.

Moreover, such websites are often difficult to setup and

maintain, thus becoming prohibitively expensive for small

data producers.

In this context we explore the benefits of using a tile-

based approach to distribute raw data along with pre-

rendered visualizations derived from it. Specifically, we

explore the GoogleMaps API, a tile-based, pan-and-zoom

interface that is well supported and highly familiar. As

we will demonstrate in five examples, integrating our

approach within new or established visualization sys-

tems would allow data producers (e.g., bioinformaticists,

programmers assisting biologists in large labs) to create

meaningful data views offline and easily distribute them

online simply by copying a directory onto a webserver.

Data consumers (e.g., individual researchers) could then

readily access such data views in browsers. This removes

the two limitations described in the previous paragraphs.

First, it offers a simplified way of publishing data by elim-

inating the need for databases and complex client-server

architectures. Second, it enables low-overhead access to

readily analyzable views, thus facilitating lightweight anal-

yses of datasets outside a researcher’s immediate focus.

While perhaps not immediately suited for highly complex

and on-the-fly analyses, we see this approach as particu-

larly useful in augmenting traditional data publication.

Google Maps uses Ajax (asynchronous JavaScript and

XML) technology to display images stored on a web-

server in a user’s browser. This links our approach to

calls for Ajax-based applications in biology [12,13] and

a system implementation demonstrating how rendering

can be performed on the server and resulting images

served asynchronously to the browser [14]. However, the

sole difference between this work and offline visualization

systems is that control and display are done in a sepa-

rate place from rendering and computation. Our research

differs by attempting to reduce regular users’ effort in

creating visualizations by assigning this task to experi-

enced personnel, and by using an approach that rests on

pre-rendered tiled visualizations frameworks such as the

Google Maps API.

Google Maps or other pan and zoom frameworks have

been recently used to display non-cartographic data. Clos-

est to our work are X:MAP [15] and Genome Projector

[16], which present implementations of genome browsers

in Google Maps and CATMAID [17] which provides

tiled imagery derived from microscopy and allows for

annotation and collaborative work. Also similar is ZAME

[18] which uses the zoom-and-pan paradigm to visual-

ize graphs as adjacency matrices and looks similar to

our heatmap representations. We apply the tile-based

approach to a broader array of problems, by offering

five concrete examples and providing evaluations of both

Google-Maps-powered visualizations in general and of

the specific visualization examples presented. It also dif-

fers from CATMAID by enabling the exploration of sig-

nificantly larger data volumes.

Finally, from a theoretic and conceptual point of view,

our work implements a range of aspects from the the

Space-Scale diagram framework described by Furnas and

Bederson [19], work which has inspired several results

on multi-scale visualization systems [20], semantic zoom-

ing [21], and navigation paradigms for large zoomable

spaces [22].

The work we present here was motivated and vali-

dated by collaborating on the Immgen project, a sci-

entific effort aimed at generating a compendium of

gene expression in immune cells. Our goal was to dis-

seminate the project’s microarray data on the Imm-

gen website. A collaborative design process revealed

that the pre-rendered browser approach worked well

here: data comes in large quantities, benefits from

exploration, and requires hyperlinking to other data

sources, biologists use well established visualizations,

many of which 2D and requiring little interaction, and

lab researchers are rarely eager to install and learn new

applications. Finally, our collaborators were excited about

replacing their database-driven, query-oriented website

with something easier to maintain and more visually

expressive.

The contributions of this paper lie in an evaluation

across multiple visualizations of how Google Maps can

help the biological domain, an exposition of design ele-

ments for building such visualizations, and a few algo-

rithmic elements specific to each of our example viewers.

Several of the elements featured in our work have been

previously investigated by other authors but mostly in
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isolation. We also mention that we have described several

of the visualization components featured in this article

in other publications. Specifically, in [23] we describe

the use of Google Maps to view genomic co-regulation

data, in [24] we use Google Maps to increase the acces-

sibility of visualizations of white matter structures in the

brain, while in [25] we discuss how to display node-link

diagrams of protein-protein interactions using a static

map interface. These publications provide valuable details

about the implementation of these visualizations and are

featured as examples in this paper. Here we give a uni-

fied discussion of the use of Google Maps for visualizing

biomedical data and provide an encompassing evalua-

tion. As such, this is the first paper that approaches the

use of Google Maps with an emphasis on evaluation and

general design.

Methods
This section introduces the Google Maps interface and

five examples we have implemented using this tech-

nology. These examples are demonstrated in Additional

file 1. Discussion of several design elements is deferred to

the results section, which gives a more unified exposition

on using Google Maps to display non-geographic data.

Figure 1 Co-expression map of 23k genes over 24 cell types of the B-cell family. The top view illustrates how maps are combined with

client-side graphics: the map is at the center of the display while selecting genes on the map generates the heatmap on the right. Maps have

multiple levels of zooming (bottom row), each with a potentially different representation. For example, genes are drawn as heatmap glyphs at the

high zoom (lower right), and as dots at low zoom. Expression profiles of collocated genes are aggregated and displayed as yellow glyphs over the

map. As zoom increases, expression profiles are computed for increasingly smaller regions. Interactions are not limited to zooming and panning;

pop-up boxes link out to further data sources and selections of genes bring up a heat map (top panel).



Jianu and Laidlaw BMC Research Notes 2013, 6:179 Page 4 of 14

http://www.biomedcentral.com/1756-0500/6/179

Google Maps

We use the Google Maps API, an Ajax tile-based frame-

work used to render large maps, to display our visualiza-

tions. It receives as input image data in the form of a set of

small images, called tiles, that when assembled form the

different zoom levels of the map. Each zoom level consists

of a rectangular grid of tiles of size 2zoom × 2zoom. The API

decodes the zoom level and coordinates of the currently

viewed map region to retrieve and display the visible tiles.

The developer can load a custom set of tiles in the API by

implementing a callback function that translates numer-

ical tile coordinates and zoom level into unique paths to

the custom tiles. The API provides basic functionally such

as zooming and panning and allows programmatic exten-

sion or customization with markers and polyline over-

lays, information pop-ups and event management. The

API can be easily integrated into any Javascript-powered

web page.

Gene co-expression map

In [23] we introduced a Google Maps browser viewer that

displays co-regulation of large numbers of genes. Specif-

ically, given genes with expression measurements over

multiple cell types, we construct 2D projections that place

genes so that their proximity is proportional to the simi-

larity of their expression profiles (see Figure 1). In essence

this is a dimensionality reduction problem similar to that

proposed by Skupin [26,27].

We used a custom planar embedding algorithm inspired

by HiPP [28] that introduces discrete cluster boundaries

in the visualization (Figure 1). This addressed user feed-

back indicating that the lack of visible clusters detracts

from analysis. In our implementation genes form groups

based on their planar location. Such groups are enclosed

by bounding curves and glyphs depicting the average-

expression profile of each group are superimposed at the

group’s location. The specificity of groupings is linked

to zoom level (groups become smaller and tighter when

zooming in). Similarly to [26] this was achieved by super-

imposing a hierarchical clustering and zoom-linked cut

levels. As seen in Figure 1, we couple a standard Google

Map implementation to client-side graphics (Protovis

[29]) to display expression heatmaps of selected genes on

demand. Users have the possibility to search for genes and

highlight them via markers, and retrieve gene metadata in

information pop-ups.

Figure 2 Heatmap representation. A heatmap representation is displayed as a map, with gene and cell-type axes implemented in Protovis

attached at right and bottom. The axes are linked to the map’s zooming and panning so that users can identify which genes and cells they are

looking at. Selection of an area of interest prompts the highlighting of the corresponding cell types and genes.
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Gene expression heatmaps

Given genes with multiple expression measurements over

multiple cell types, we construct rectangular heatmaps.

Each row corresponds to a gene and each column to a

condition and each cell is a color-coded expression value.

Rows and columns are arranged to place co-regulated

genes and conditions together.

Figure 2 exemplifies a low-cost Google Map implemen-

tation using our collaborators’ color conventions. Protovis

was used to attach at the right and the bottom of the

map axes gene and condition labels. These are synchro-

nized to the map’s zoom and pan so that labels for the

currently viewed region of the heatmap remain within

view. Mouse-over is used to display the gene-cell combi-

nation at a given heatmap cell while information pop-ups

can be used to retrieve more detailed metadata. This

representation is deployed and in use on the Immgen

website.

Genome browser

Given expression values over a set of conditions for any

gene, we create color-coded expression glyphs at genes’

genomic coordinates (see Figure 3). Such representations

can answer questions about correlations between gene

function and genomic location.

Heatmap glyphs color-coding expression in multiple

cells are created for each gene, using our collaborators’

color convention. A gene-name label is included for each

gene. Chromosomes are arranged vertically, each extend-

ing horizontally. In response to user feedback, no space

warping or distortions, such as in [9,30], have been used.

The expression glyphs are mapped onto this space based

on gene location. We use no aggregation of expression for

different zoom levels because our collaborators felt that

expression variability in co-located genes is sufficient to

render aggregations meaningless.

Genes are not uniformly distributed on chromosomes;

instead, regions with high and low gene density alter-

nate. In high-density regions the space available to render

a gene, assuming finite zooming, is limited and often

insufficient to ensure visibility of the glyph elements. We

therefore spread gene glyphs apart and anchor them with

a leader line to their true genomic positions.

Gene search and highlighting of sets of genes are

supported. The highlighting marker is an image with

high alpha in the center and fading alpha towards the

Figure 3 Genome viewer as Google Map. Gene expression data measurements over eight cell types of the entire mouse genome are mapped

onto genome coordinates. The top view shows the general analysis framework as presented on the Immgen website; zoomed-in views appear at

the bottom. Three types of visual queries can be performed, depending on the zoom. At an overview, lists of relevant genes can be highlighted

using Google markers with custom icons - white lines with alpha gradients on each side - marking regions with interesting expression

characteristics. At an intermediate zoom (lower left), regions with similar expression can be identified: a blue low-expression region is visible at

center right. At a zoomed-in level individual expression values and gene names can be identified.
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boundaries, so that the closer two highlighted genes are,

the more their markers amplify each other. This ensures

that regions with a high density of marked genes stand out

in overview zooms (Figure 3).

Protein interaction networks

In a fourth example we display protein interaction

networks from online databases in browsers, using

pre-rendered tiled visualizations. Such representations

let proteomicists understand experimental data in the

context of available information. The complete tech-

nical details of our implementation can be found

in [25].

Network information is not intrinsically spatial, so that

zooming and panning do not necessarily define useful

data queries. Specifically, layout algorithms may place

connected proteins far apart and zooming then splits

them across multiple views. As described in [25] we use

vertex splitting, a process which untangles graph lay-

outs by duplicating nodes, to ensure that linked-proteins

are co-located. Vertex splitting has been originally intro-

duced by Eades and Mendonca [31] and revisited more

recently by Henry et al [32] as node duplication. As a

further design choice we use the city-versus-town dis-

tinction in a map analogy to filter out unimportant

proteins at overview zoom levels. As in [33], this rel-

evance measure is computed as a function of a pro-

tein’s intrinsic relevance and a relevance diffused from

neighboring nodes.

As shown in Figure 4, we use polyline overlays to show

selected proteins, information pop-ups to display meta-

data, and markers to highlight experimentally derived

proteins. Vertex splitting generates multiple copies of the

same protein. A window on the side of the map lists copies

of selected proteins: clicking on list-items causes a jump

to that copy’s location. Finally, proteomic experimental

Figure 4 Analysis of quantitative proteomic data in the context of a protein interaction network. The top panel shows an overview of the

analysis setup. Time-course proteomic data is displayed on the lower left. The experimental protein selected in the list is highlighted on the map. A

second protein selected on the map has its interactors and meta-information displayed. All instances of this protein are listed on the upper left,

together with their interactors. Three additional zoom levels are shown on the lower row; as zoom level increases, less relevant proteins are added

to the display.
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data can be loaded and displayed as heatmaps on the

left-hand side of the map.

Neural projections

In [34] we show how to construct planar representations

of white-matter structures in the brain, starting from con-

ventional 3D tractograms. Specifically, we cluster tracts

using a curve-similarity measure, select centroid tracts

for each cluster, and project these onto three princi-

pal projection planes: sagittal, coronal and transverse.

These projections completely describe white matter in

the brain and can be distributed as Google Maps.

They enable scientists to navigate through sets of trac-

tograms, analyze characteristics of major white-matter

structures and find datasets exhibiting desired statistical

properties.

As seen in Figure 5, tracts can be selected and high-

lighted on the projection map using polyline overlays.

Selections rely on tract trajectory information that is

exported along with the pre-rendered visualizations.

Statistics in both textual and image form are pre-

computed for each tract cluster, when the visualization is

created, as are a few 3D poses as animated GIF images.

This information can be retrieved in information pop-ups.

While this application domain is not tightly related

to those of our other visualizations, its implementation

furthers the design discussion that follows. Additionally,

its evaluation brings to light several limitations of this

approach that are perhaps peculiar to domains other than

genomics or proteomics.

Results
This section documents the main results of our work: a

comprehensive evaluation demonstrating the benefits of

using tile-based interfaces to disseminate biological data

and a set of design guidelines for software designers who

wish to build on this approach.

Evaluation

An evaluation by domain experts of the viewers described

in the previous section reveals strengths and limitations

of the general approach as well as of each individual visu-

alization example. We start with details about the eval-

uation procedure, then present feedback concerning the

approach as a whole, and end with comments on each of

the five visualizations.

Methodology

Twelve domain experts were involved in our evalua-

tion. Four proteomic researchers from two separate labs

evaluated the protein network. Five geneticists studying

immune cells evaluated the co-regulation viewer, heatmap

and genome browser. One of them, the Immgen coordi-

nator, collaborated with us during the design and imple-

mentation of these three visualizations. Finally, three neu-

roscientists gave us input on the neural projections.

We showed the viewers to individual subjects and col-

lected feedback.We first explained the visual encodings of

the data and demonstrated the interactive features of the

visualizations. We then let the subjects use the visualiza-

tions and encouraged them to give us their impressions

during the process. Questions prepared in advance were

also asked explicitly if our subjects didn’t touch on them

during conversation. Open-ended questions were asked

first, followed by more concrete inquiries on potential

drawbacks or advantages.

Evaluation summary

This section presents feedback on the pre-rendered

browser approach as a whole.

Figure 5 DTI tractography data projected onto the transverse, coronal and sagittal planes.Major tract bundles are represented schematically

by their centroid tract; individual tracts in bundles are linked from the centroid bundle to their projected endpoints. Bundles can be selected and

precomputed statistical data along with 3D poses of the tract bundle can be displayed.
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Ease of use: Subjects rated ease of use higher than

for other systems they were familiar with. They were

excited to visualize data in browsers. The

proteomicists in particular stated that this setup

makes them more likely to use the visualizations,

remarking that they prefer not to spend time

installing software and learning new features.

Users: Potential users were identified as scientists

lacking access to a computational infrastructure and

those analyzing unfamiliar datasets. Our geneticists

noted that new Immgen members spend

considerable time becoming accustomed to data, and

that such visualizations would support this process.

One subject, contemplating her post-graduation life,

removed from the bioinformatics support of

Immgen, realized how helpful it would be if data was

generally presented in this form.

Use: Unlike advanced analysis systems, we targeted

exploratory, preliminary and casual browsing of data.

Our subjects suggested using these visualizations to

learn new datasets and for casual analysis while

commuting or at home. Another suggestion was to

use such applications to create small customized

datasets from larger data volumes. Our subjects were

most excited about the intuitiveness and low

overhead and several noted that the interaction set

was sufficient for their analysis tasks.

Workflows: The main workflow we identified was

projecting familiar data elements onto existing data

spaces. Geneticists would highlight their genes of

interest into the co-regulation viewer; proteomicists

would load experimental datasets and explore their

interaction neighborhood in the interaction network.

Interactivity:Most subjects remarked that the

implementations demonstrated were sufficiently

complex for quick data analysis. Most were content

with the feature sets, interaction and visualization

provided, while some asked for more hyperlinking

and metadata features.

Drawbacks: Perhaps unsurprisingly, it was the static

nature of our approach that drew the most criticism.

Even so, those expressing concern were in the

minority: one geneticist and all three neuroscientists.

The geneticist said the inability to customize what

the visualization is showing would impede his

analysis. He was, however, interested in

disseminating his data in this form, indicating that he

found the approach useful. This subject was a senior

lab member highly familiar with the Immgen data

used for the demonstration, which may explain his

desire for flexibility. All three neuroscientists said

that interactive fiber-tract selection mechanisms are

indispensable in clinical white matter studies. Since

selections in our visualization are restricted to

pre-computed fiber clusters, they are insufficiently

flexible. However, they noted that the approach is

ideal for searching data repositories for candidate

datasets for studies and for casually browsing data.

Summary: The most tangible feedback we received

was the decision of the Immgen coordinator to

switch the lab’s database-driven distribution system

to our pre-rendered tile approach. He commented on

the benefits of accompanying raw data with relevant

visualizations. An important factor in his decision

was the minimal overhead of both maintaining and

using the systems.

Evaluation of individual viewers

Here we present feedback received for each of the five

individual viewers.

Gene co-expression viewer: Subjects found the

co-expression projections useful in identifying how

sets of genes of interest co-regulate in various cell

combinations, and in finding other genes that exhibit

expression patterns similar to known ones. One

subject would also look for global patterns of

co-regulation, possibly over multiple maps, and

suggested we link maps in separate browser tabs.

The visualization was deemed intuitive and easy to

use. Two users particularly liked the superposed

expression profiles, stating that they summarized

data well and could guide exploration. Users were

also happy with the heatmap-upon-selection

mechanism and with the ability to export selected

sets of genes. Three out of five users were content

with the pre-defined cell configurations imposed by

the static visualization. The other two would have

preferred to customize the cell types over which

genes are projected, but noted that in their domain

only a few cell subsets were biologically meaningful

(e.g. corresponding to cell families or lineages).

Gene expression heatmap: Our collaborators often

publish static heatmap images as large as 2000 rows

by 500 columns. The absence of any interaction,

however, is an important limiting factor, which is

what motivated our implementation. Only two of our

five evaluation subjects used heatmaps at this scale in

their analysis and were able to provide feedback.

They were excited about our visualization and noted

that the mouse-over functionality, information

pop-ups, and sticky axes were sufficient for their

analytic needs. A single extension was

recommended: zooming along a single dimension

(genes or cells) to create a visual aggregation effect

that could answer some scientific questions. Our

collaborators adopted the interactive heatmaps and

made them operational on the Immgen website.
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Genome browser: Initial feedback identified the

need for an overview analysis of gene expression in

the genome space, in particular the extent to which

adjacent genes share expression patterns.

The viewer does not employ semantic zooming such

as aggregating expression values over contiguous

genomic regions. Instead we relied on additive visual

cues of individual items that create salient expression

patterns when zoomed out. Our collaborator

suggested this design to avoid erroneous aggregation

effects and subsequent feedback suggested that it was

indeed effective. The ability to highlight genes

identified by specific queries (Figure 3) was also

considered useful. Using it, our subjects observed

that genes with comparable patterns of activity tend

to be dispersed and that co-regulated clusters exist

but are relatively rare, contrary to their prior beliefs.

This feedback was provided by two subjects

interested in overview analyses of regulation patterns.

Our other three subjects were less interested in

genomic mappings were unable to comment on the

usefulness of this particular visualization.

Protein interaction networks: Our proteomicists

were excited about looking at interaction networks in

their browsers. The consensus was that the setup is

highly effective and that they would choose it over

other systems they were familiar with. The

interactivity of the system was judged appropriate,

with more metadata the feature most commonly

requested.

Our subjects’ unanimous opinion was that relevance

filtering was intuitive. They noted that it

corresponded to how they normally approach a new

network: identify important or familiar proteins and

then drill down to learn more about their neighbors.

Another comment was that seeing familiar proteins

and connections early reinforces their confidence in

the visualization. All subjects thought that the

heuristics used to compute the relevance of proteins

were appropriate. Three subjects stated that multiple

copies of proteins resulting from vertex splitting

would not obstruct their analysis. One even said he

liked the approach because it made proteins’

interaction neighborhoods more apparent. The

fourth subject said that protein duplicates are

undesirable but acceptable as long as they can be

easily explored. He noted that the copies-list on the

left (Figure 4) lets him to do this efficiently.

Neural projections: The neuroscientists we

interviewed commented that quantitative clinical

studies on white-matter tractograms require precise

bundle selections, thus rendering interactivity

indispensable. However, they pointed out the unique

opportunities offered by our visualizations:

collaborating with other scientists by sending links,

being able to look at datasets anywhere, any time,

and browsing through datasets before importing a

model into a desktop application. The evaluation led

us to conclude that static maps are less suited for the

3D domain where complex interactions are needed,

but can occupy a task-specific niche such as

collaborative work and casual analysis.

Design

Here we describe how to leverage the features of the

Google Maps API in the context of data visualization.

The design elements we present are a distillation of the

feedback presented in the previous section and of the

design and development that produced the visualizations

featured here.

Overview

Data size and specification: To compensate for

their static nature, pre-rendered visualizations

should en-compass all data associated with a

scientific problem. Thus, a visualization can be useful

for many queries, since data specification can be

done during visualization through zooming, panning

and highlighting. Individual visualizations sometimes

need to be adapted to suit this approach. Our protein

interaction networks use vertex splitting to enable

queries by zoom-and-pan and a zoom-linked filter to

address clutter. Our co-regulation map uses

expression glyphs that guide users towards gene

groups with specific expression patterns.

Use: Unlike advanced analysis systems, we have only

targeted exploratory, preliminary and casual

browsing of data or lightweight analysis tasks. It is

thus hard to determine how suited this approach is in

the context of more complex functionality.

Users: Users can be divided into data consumers and

data producers. In our experience, the former often

perceive a dataset to have a low reward-effort ratio

because they are unfamiliar with the type of data, are

generally computer averse or lack access to a

computational infrastructure. The browser

visualizations targeting such users should be sparse

and intuitive. This may seem self-evident, but

state-of-the-art visualization systems commonly

require scientists to understand visualization-specific

jargon (e.g., select a specific graph-drawing

algorithm). Data producers want to distribute

visualizations along with their raw data so that fellow

researchers need not run their own analysis. Data

producers will use an interactive system to create the

browser visualizations. The assumption is that they

are specialists in the data they are distributing, so
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that a system can use more complex visualization

metaphors.

Development overhead:Development overhead can

vary greatly among visualizations: our heatmaps are

just static images augmented with basic interactivity,

co-regulation information had to be first projected in

2D, and protein interaction networks required an

entirely new drawing algorithm. A simple heuristic is

that the overhead depends on the effort required to

planarize the information displayed (e.g., relational

data is harder than projected multidimensional data)

and on the amount of data shown.

Deployment: Google Maps visualizations can be

designed to work without dependencies on databases

and server-side scripting. In such cases they can be

deployed by simply copying a directory structure to a

web server. This was an important factor for our

collaborators in deciding to adopt this mode of

representation.

Interactivity

While reiterating that complex interactions are not the

focus of this approach, we give below a few interaction

patterns common in visualization that are possible in

implementations based on Google Maps.

Selection/Brushing: For selection, positions of

selectable elements have to be exported in data files,

along with the pre-rendered visualization. This

information is used to translate coordinates of mouse

events into selections. In the co-regulation viewer

and heatmap, users select genes by drawing enclosing

rectangles. In the white-matter visualization we

export curve trajectories for each tract-cluster, and

use the proximity of a mouse click to a curve as a

selection heuristic.

Highlighting: Elements selected through interaction

or search can be highlighted using markers or

polylines (traditionally used to highlight routes in

digital geographic maps). Figure 1 illustrates a group

of selected genes identified by markers. Polylines are

used to implement Munzner’s constellation

technique [35] on the protein interaction network

(see Figure 4) and highlight tract-cluster trajectories

on the white-matter visualization. Finally, images

shown as markers can be customized to create more

complex effects. In the genome browser for instance,

multiple co-located markers with alpha gradients

create an additive visual effect.

Semantic zooming: Our protein interaction

network illustrates semantic zooming by displaying

additional proteins with each increase in zoom level.

The map framework allows developers to show

different images at each zoom level. A scene can thus

be pre-rendered at different zoom levels, each with

its own visual abstractions. Two important factors to

consider are that a visualization can have only as

many abstractions as zoom levels and that exported

images double in pixel size with each additional

zoom level. This should be taken into consideration

in designing the number of abstractions, as

thirteen-level visualizations are infeasible to

distribute (see next section).

Filtering: Semantic zooming can be used to

implement filtering. As mentioned before, our

protein interaction network (Figure 4) illustrates this

concept. While not implemented in any of our

visualizations filtering could also be achieved by

rendering multiple complete tile-hierarchies for

pre-determined filtering conditions. Completely

dynamic filtering is infeasible using pre-rendered

visualizations.

Data aggregation/abstraction: In our co-regulation

viewer we average expression values over groups of

genes at varying levels of specificity. In the genome

viewer we contemplated displaying aggregated

expression values over larger genome regions at

overview zooms to deal with gene density, but chose

a different approach following user feedback.

Semantic zooming is, however, a good way to

implement varying degrees of data abstraction.

Another way is to use combinations of markers with

custom icons to create glyphs that show aggregated

data; this has the advantage that such effects can be

created programmatically at run time. A simple

example is seen in our genome browser where

selection glyphs create an aggregated visual effect.

Details on demand: Figures 1, 2, 4 and 5 illustrate

how information popups are used to retrieve

information about visualization elements. Figure 5

shows how pre-computed statistical data and

3D-poses can even offer different perspectives of

selected data subsets. A second detail-on-demand

implementation is shown in Figure 2: mouse hovering

generates a tooltip overlay. For more interactivity,

browser-side graphics can be coupled with Google

Maps. The co-regulation map (Figure 1) uses

Protovis to show expression values of user-selected

genes as heatmaps. We note that information used in

the detail views (e.g. expression values, 3D-poses etc)

must be exported along with the rendered tiles.

Overview+Detail: The implicit Overview+Detail

mechanism in Google Maps is the mini-map.

However, more complex interactions can be

achieved with browser-side graphics or multiple

synchronized Google Maps on the same page. The

closest feature to this in our implementations is the

dynamically generated heatmaps in the co-regulation
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viewer. However, it would be easy to extend the

protein interaction network by a linked Protovis

viewer that displays local network information for

selected proteins.

Brushing and Linking: Two of our evaluation

subjects noted that linking several of our

visualizations together can be beneficial. For example,

linking co-expression views (e.g. for different cell

families) can answer questions about conservation of

gene function over multiple conditions. This

functionality was implemented for the co-expression

maps using browser cookie-polling, as shown in

Figure 6. We also hypothesize that such brushing and

linking functionality could be used to link data maps,

Figure 6 Linked co-regulation maps of the T-cell (top) and B-cell

(bottom) families. A selection in the T-cell viewer is reflected in the

B-cell viewer. A few groups of genes that are co-regulated in both cell

families appear in the upper part of the B-cell map.

external data sources, and other analytic web services

together to create more complex environments.

Improving performance

Below are a few considerations for improving the perfor-

mance of tiled visualizations.

None of our visualizations required more than nine

zoom levels. Assuming a tile size of 256 pixels, these trans-

late into square images with 28 ∗ 256 = 65536 pixels on

the side, at the largest zoom level. Furthermore, the num-

ber of tiles quadruples at each additional zoom level such

that these visualizations consisted of
8∑

i=0

2i ∗ 2i = 87381

image files. Efficient image compression is desirable to

reduce space requirements and speed up tile loading. Tile

numbers can also be reduced by exploiting that visual-

izations often contain areas of empty background. Thus,

many tiles can be represented by a single background-tile.

Coordinates of background tiles are exported at the time

of rendering and subsequently decoded by the Javascript

implementation. Empty tiles are usually compressed into

smaller files by default (due to uniform coloring) and

their number is visualization dependent. Still, perfor-

mance gains remain meaningful and typically grow con-

siderably with increases in a visualization’s zoom levels.

Table 1 summarizes these improvements on several of our

visualizations.

As mentioned in the previous section, interaction and

data on demand rely on exporting additional informa-

tion at rendering time that must be fetched and used by

the browser visualization. Loading this data at once, dur-

ing initialization, can freeze the visualization and result

in large memory loads. Instead, in line with the tile

approach, the information should be split in multiple files

and retrieved only when an interaction demands it. For

example, information about the shape of the curves in

the white-matter visualization is split over a 10 × 10

grid spanning the visualization. Upon a mouse click, the

Table 1 Number of tiles and disk space analysis

All tiles Non-empty tiles

PNG JPG PNG JPG

Co-reg. (5461 37.6) (5461 39.9) (3505 35.1) (3505 30.2)

Heatmap (5461 23) (5461 29.4) (2811 12.7) (2811 19)

Networks (5461 32.2) (5461 33.6) (4620 29.8) (4620 25.3)

Brain (5461 37.6) (5461 39.9) (3505 34.1) (3505 32.2)

Genome (5461 35.1) (5461 38) (4051 27.1) (4051 30.3)

Genome* (87381 263.4) (x x) (17630 100) (x x)

Number of tiles and disk space(MB) for the five visualizations with different

image compression (PNG vs. JPG) and all tiles vs. non-empty tiles. First five rows

stand for visualizations with 7 zoom levels; the last row corresponds to a 9 level

genome browser.
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corresponding cell content is fetched and tested for inter-

sections. If an intersection with a tract cluster is found,

a file containing information about this cluster (e.g., clus-

ter trajectories for highlighting, metadata to be displayed

in information pop-ups) is retrieved. This ensures that

visualizations remain responsive during interactive tasks.

Discussion
There are several differences between traditional visu-

alizations and the tile-based design we explored in this

paper. First, instead of the data-query-specification/re-

computed-visualization paradigm, our examples con-

tained most data associated with a biological problem,

and querying was essentially done through zooming

and panning. Second, while traditionally end users are

responsible for constructing visualizations, our evalua-

tion suggests that in some cases placing the construction

of visualizations in the hands of bioinformatics staff in

larger labs, such that they are computed only once and

become readily available for users to analyze, can be use-

ful in several scenarios. Finally, we showed that fast and

intuitive access to visual perspectives of a dataset, even if

less flexible then complex systems in terms of interaction

and queries, can help in some cases accelerate analysis.

As suggested by our evaluation, the low-overhead tile

based approach we exemplify seems to be particularly

attractive to researchers lacking access to a strong com-

putational infrastructure, for unfamiliar datasets, and for

casual data browsing. Our evaluation of the white matter

visualization shows that in other domains this approach

might be more narrowly useful. From our experience, the

Google Maps API can also be a useful medium for gath-

ering feedback on visual encodings, possibly developed as

part of another system. Collaborators are more likely to

provide feedback on visualizations that they can access

and use with minimal overhead than on ones they must

install and learn. Furthermore, concerns such as deploy-

ment and platform, rendering speed and interactivity, GUI

and data formats become non-issues.

This work explores only theGoogleMaps API. However,

we hypothesize that other Ajax tiled approaches would

probably also be suitable for this approach. More gen-

erally, zoom-and-pan frameworks (e.g. Bing Maps API,

Silverlight, OpenZoom) can be used in conjunction with

a subset of the design elements discussed in this paper to

develop similar visualization. Moreover, the development

of a tiled frame-work designed to support data visualiza-

tion rather than geographical maps could prove useful.

Such a framework, if open source, would also alleviate

concerns about licensing, support and stability associated

with commercial products. Principles of sparsity and intu-

itiveness should remain the foundation of tile frameworks,

since the proposed browser visualizations should not seek

to rival complex systems.

We have tested our approach by extending an existing

visualization environment with Google Maps capabilities.

This process involved adapting existing viewers to the par-

ticularities of Google Maps using the design guidelines

described in this paper and extending rendering such that

it could be performed offline, on tiles, rather than just on

the screen. This process is shown in Figure 7. We note

that any visualization system or visualization framework

(e.g. Cytoscape [4], Prefuse [36]) could be augmented with

the capabilities of outputing Google Maps rendering. Our

particular system has not yet been released but our results

suggest that scientists would benefit if more established

visualization systems, such as the ones mentioned, would

incorporate methods of exporting user created views as

GoogleMaps. As a future direction we envision a web-

service, extensible by modules, that would not only allow

data producers to upload readily created data maps, but

also enable individual researchers to upload their data and

have visualizations created and published on the fly.

Users in our evaluation were excited about the collab-

oration facilities offered by maps. Exchanging interactive

images rather than static ones and sending links rather

than datasets was positively received. Pre-rendered visu-

alizations are well suited for collaborative work, since they

ensure that each user has the same view of the data and

that shared comments target the same visualization ele-

ments.We would like to add annotation capabilities to our

maps to let researchers exchange ideas.

Figure 7 Creating GoogleMap visualizations. Raw data is entered into a stand-alone visualization system which outputs Google Maps as an

image tile pyramid, a set of javascript webpages, and a set of data files to support Google Maps interactivity.



Jianu and Laidlaw BMC Research Notes 2013, 6:179 Page 13 of 14

http://www.biomedcentral.com/1756-0500/6/179

Finally, an important component of visualization

research is understanding how visualizations are used.

Due to theminimal interaction advocated, maps should be

easy to instrument. In fact, our deployed maps have been

instrumented using the Google Analytics framework.

Conclusions
A series of cognitive studies led Hegarty et al [37] to

conclude that “cognitive science research indicates that

the most effective visual representations are often sparse

and simple. When given control over interactive visu-

alizations, people do not always use these technologies

effectively or choose the most effective external represen-

tations for the task at hand.” We presented a low-overhead

approach that can facilitate browsing for a range of unfa-

miliar scientific datasets, that relies on pre-computed

visualizations carefully prepared by data experts for dis-

tribution with sparse interactions, so that end users can

access readily analyzed views of scientific data. We build

on the familiarity of the Google Maps framework and

leverage its functionality to distribute those views. Our

primary contributions are an evaluation demonstrating

the validity and opportunities of this approach and a set

of design guidelines benefiting those wanting to create

such visualizations. Additional contributions include five

concrete example visualizations.

Availability of supporting data
Much of the data used in this paper is published as part

of the Immgen project at www.immgen.org. Protein inter-

action data has been extracted from the Human Protein

Reference Database (HPRD) at wwww.hprd.org.

Additional file

Additional file 1: A web-based demonstration of four Google Map

visualizations: gene co-expression maps, a heatmap representation,

a genomic mapping, and a protein interaction network.

Competing interests

Both authors declare that they have no competing interests.

Authors’ contributions

RJ designed, implemented, and evaluated the visualizations presented in this

paper. DL participated in the design of the visualizations, coordinated the

collaborations, and helped to draft the manuscript. Both authors read and

approved the final manuscript.

Acknowledgements

We thank Christophe Benoist for helping us design and evaluate some of the

viewers presented in this paper. This work was supported by NIH grant

AI072073.

Author details
1School of Computing and Information Sciences, Florida International

University, 11200 SW 8th St, Miami, FL 33199, USA. 2Computer Science

Department, Brown University,115 Waterman St., Providence, RI 02912, USA.

Received: 4 October 2012 Accepted: 16 April 2013

Published: 4 May 2013

References

1. Eisen M, Spellman P, Brown P, Botstein D: Cluster analysis and display

of genome-wide expression patterns. Proc Natl Acad Sci 1998,

95(25):14863.

2. Seo J, Shneiderman B: Interactively exploring hierarchical clustering

results. Computer 2002, 35:80–86.

3. Decision site for functional Genomic. [http://www.Spotfire.com]

4. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N,

Schwikowski B, Ideker T: Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome

Res 2003, 13(11):2498.

5. Hu Z, Mellor J, Wu J, Yamada T, Holloway D, DeLisi C: VisANT:

data-integrating visual framework for biological networks and

modules. Nucleic Acids Res 2005, 33(Web Server Issue):W352.

6. Ingenuity. [http://www.ingenuity.com/]

7. Demir E, Babur O, Dogrusoz U, Gursoy A, Nisanci G, Cetin-Atalay R, Ozturk

M: PATIKA: an integrated visual environment for collaborative

construction and analysis of cellular pathways. Bioinformatics 2002,

18(7):996.

8. Sinha A, Meller J: Cinteny: flexible analysis and visualization of

synteny and genome rearrangements in multiple organisms. BMC

Bioinformatics 2007, 8:82.

9. Meyer M, Munzner T, Pfister H:MizBee: A multiscale synteny browser.

IEEE Trans Vis Comput Graph 2009, 15(6):897–904.

10. Johnson D, Jankun-Kelly T: A scalability study of web-native

information visualization. In Proceedings of Graphics Interface 2008:

Canadian Information Processing Society; 2008:163–168.

11. Kuehn H, Liberzon A, Reich M, Mesirov J: Using GenePattern for gene

expression analysis. In Current Protocols in Bioinformatics/editoral board,

Andreas D Baxevanis...[et al.]; 2008.

12. Aravindhan G, Kumar G, Kumar R, Subha K: AJAX Interface: a

breakthrough in bioinformatics web applications. Proteomics Insights

2009, 2009:1–7.

13. Berger S, Iyengar R, Ma’ayan A: AVIS: AJAX viewer of interactive

signaling networks. Bioinformatics 2803, 23(20):2007.

14. Gretarsson B, Bostandjiev S, ODonovan J, Hollerer T:WiGis: A framework

for scalable web-based interactive graph visualizations. In Graph

Drawing: Springer; 2010:119–134.

15. Yates T, Okoniewski M, Miller C: X: Map: annotation and visualization

of genome structure for Affymetrix exon array analysis. Nucleic Acids

Res 2008, 36(Database issue):D780.

16. Arakawa K, Tamaki S, Kono N, Kido N, Ikegami K, Ogawa R, Tomita M:

Genome projector: zoomable genomemap with multiple views.

BMC Bioinformatics 2009, 10:31.

17. Saalfeld S, Cardona A, Hartenstein V, Tomančák P: CATMAID:
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