349 research outputs found

    Does communication enhance pedestrians transport in the dark?

    Get PDF
    We study the motion of pedestrians through an obscure tunnel where the lack of visibility hides the exits. Using a lattice model, we explore the effects of communication on the effective transport properties of the crowd of pedestrians. More precisely, we study the effect of two thresholds on the structure of the effective nonlinear diffusion coefficient. One threshold models pedestrians's communication efficiency in the dark, while the other one describes the tunnel capacity. Essentially, we note that if the evacuees show a maximum trust (leading to a fast communication), they tend to quickly find the exit and hence the collective action tends to prevent the occurrence of disasters

    Sputtering of Oxygen Ice by Low Energy Ions

    Get PDF
    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.Comment: to be published in Surface Science (2015

    A mesoscopic lattice model for morphology formation in ternary mixtures with evaporation

    Get PDF
    We develop a mesoscopic lattice model to study the morphology formation in interacting ternary mixtures with the evaporation of one component. As concrete potential application of our model, we wish to capture morphologies as they are typically arising during the fabrication of organic solar cells. In this context, we consider an evaporating solvent into which two other components are dissolved, as a model for a 2-component coating solution that is drying on a substrate. We propose a 3-spins dynamics to describe the evolution of the three interacting species. As main tool, we use a Monte Carlo Metropolis-based algorithm, with the possibility of varying the system's temperature, mixture composition, interaction strengths, and evaporation kinetics. The main novelty is the structure of the mesoscopic model – a bi-dimensional lattice with periodic boundary conditions, divided into square cells to encode a mesoscopic range interaction among the units. We investigate the effect of the model parameters on the structure of the resulting morphologies. Finally, we compare the results obtained with the mesoscopic model with corresponding ones based on an analogous lattice model with a short range interaction among the units, i.e. when the mesoscopic length scale coincides with the microscopic length scale of the lattice

    Free to move or trapped in your group: Mathematical modeling of information overload and coordination in crowded populations

    Full text link
    We present modeling strategies that describe the motion and interaction of groups of pedestrians in obscured spaces. We start off with an approach based on balance equations in terms of measures and then we exploit the descriptive power of a probabilistic cellular automaton model. Based on a variation of the simple symmetric random walk on the square lattice, we test the interplay between population size and an interpersonal attraction parameter for the evacuation of confined and darkened spaces. We argue that information overload and coordination costs associated with information processing in small groups are two key processes that influence the evacuation rate. Our results show that substantial computational resources are necessary to compensate for incomplete information -- the more individuals in (information processing) groups the higher the exit rate for low population size. For simple social systems, it is likely that the individual representations are not redundant and large group sizes ensure that this non--redundant information is actually available to a substantial number of individuals. For complex social systems information redundancy makes information evaluation and transfer inefficient and, as such, group size becomes a drawback rather than a benefit. The effect of group sizes on outgoing fluxes, evacuation times and wall effects are carefully studied with a Monte Carlo framework accounting also for the presence of an internal obstacle

    Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

    Get PDF
    We propose a semi-discrete finite difference multiscale scheme for a concrete corrosion model consisting of a system of two-scale reaction-diffusion equations coupled with an ode. We prove energy and regularity estimates and use them to get the necessary compactness of the approximation estimates. Finally, we illustrate numerically the behavior of the two-scale finite difference approximation of the weak solution.Comment: 22 pages, 1 figure, submitted to Japan Journal of Industrial and Applied Mathematic

    Data Collection Theory in Healthcare Research: The Minimum Dataset in Quantitative Studies.

    Get PDF
    There is considerable interest in data analytics because of its value in informing decisions in healthcare. Data variables can be derived from routinely collected records or from primary studies. The level of detail for individual variables in quantitative studies is often disregarded. In this work, we aim to present the concept of a minimum dataset for any variable. The most basic level of data collection is the value of a variable. In addition, there may be an indicator of severity and a measure of duration or how long the value has been present. The time course defines how the values for a variable fluctuated over time. The validity or accuracy of the values for a variable is also important to avoid spurious findings. Finally, there may be additional modifiers which drastically change the impact of a variable. In conclusion, the minimum dataset is a framework which can be used for the purposes of study design and appraisal of studies. Not all data requires full consideration of the minimum dataset framework for each variable, but the framework may be important if more detailed results are desired

    Identification of a Response Amplitude Operator for Ships

    Get PDF
    At the European Study Group Mathematics with Industry 2012 in Eindhoven, the Maritime Research Institute Netherlands (MARIN) presented the problem of identifying the response amplitude operator (RAO) for a ship, given input information on the amplitudes of the sea waves and output information on the movement of the ship. We approach the problem from a threefold perspective: a direct least-squares approach, an approach based on truncated Fourier series, and an approach using low-dimensional measures of the RAO. We give a few recommendations for possible further investigations

    Exact Cover with light

    Full text link
    We suggest a new optical solution for solving the YES/NO version of the Exact Cover problem by using the massive parallelism of light. The idea is to build an optical device which can generate all possible solutions of the problem and then to pick the correct one. In our case the device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible covers (exact or not) of the given set. For selecting the correct solution we assign to each item, from the set to be covered, a special integer number. These numbers will actually represent delays induced to light when it passes through arcs. The solution is represented as a subray arriving at a certain moment in the destination node. This will tell us if an exact cover does exist or not.Comment: 20 pages, 4 figures, New Generation Computing, accepted, 200

    A Comparative Study of Embedded and Anesthetized Zebrafish in vivo on Myocardiac Calcium Oscillation and Heart Muscle Contraction

    Get PDF
    The zebrafish (Danio rerio) has been used as a model for studying vertebrate development in the cardiovascular system. In order to monitor heart contraction and cytosolic calcium oscillations, fish were either embedded in methylcellulose or anesthetized with tricaine. Using high-resolution differential interference contrast and calcium imaging microscopy, we here show that dopamine and verapamil alter calcium signaling and muscle contraction in anesthetized zebrafish, but not in embedded zebrafish. In anesthetized fish, dopamine increases the amplitude of cytosolic calcium oscillation with a subsequent increase in heart contraction, whereas verapamil decreases the frequency of calcium oscillation and heart rate. Interestingly, verapamil also increases myocardial contraction. Our data further indicate that verapamil can increase myocardial calcium sensitivity in anesthetized fish. Taken together, our data reinforce in vivo cardiac responses to dopamine and verapamil. Furthermore, effects of dopamine and verapamil on myocardial calcium and contraction are greater in anesthetized than embedded fish. We suggest that while the zebrafish is an excellent model for a cardiovascular imaging study, the cardio-pharmacological profiles are very different between anesthetized and embedded fish

    Can multisensorial media improve learner experience?

    Get PDF
    In recent years, the emerging immersive technologies (e.g. Virtual/Augmented Reality, multisensorial media) bring brand-new multi-dimensional effects such as 3D vision, immersion, vibration, smell, airflow, etc. to gaming, video entertainment and other aspects of human life. This paper reports results from an European Horizon 2020 research project on the impact of multisensoral media (mulsemedia) on educational learner experience. A mulsemediaenhanced test-bed was developed to perform delivery of video content enhanced with haptic, olfaction and airflow effects. The results of the quality rating and questionnaires show significant improvements in terms of mulsemedia-enhanced teaching
    • …
    corecore