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Abstract

We study the motion of pedestrians through an obscure tunnel where the lack of vis-
ibility hides the exits. Using a lattice model, we explore the effects of communication
on the effective transport properties of the crowd of pedestrians. More precisely, we
study the effect of two thresholds on the structure of the effective nonlinear diffusion
coefficient. One threshold models pedestrian communication efficiency in the dark,
while the other one describes the tunnel capacity. Essentially, we note that if the
evacuees show a maximum trust (leading to a fast communication), they tend to
quickly find the exit and hence the collective action tends to prevent the occurrence
of disasters.

Résumé

Nous étudions la dynamique des movements de foules dans un tunnel dont la visi-
bilité est tres reduite. Tout en particulier, nous nous intéréssons a des tunnels dont
les sorties ne sont pas visibles. A Paide de notre modele — un automate cellullaire —
nous exploitons les effets de la communication inter—personnelle parmis les piétons
sur la structure de la nonlinearité du coefficient de diffusion. Nous modélisons
Iefficacité de la communication inter—personnelle ainsi que la capacité des sorties a
I’aide de deux barrieres.
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1 Introduction

This Note deals with the following evacuation scenario: A possibly large group
of pedestrians needs to evacuate a long and obscure tunnel. The lack of visi-
bility is due to either an electricity breakdown or due to a dense smoke. The
basic modeling assumption is that the pedestrians are equally fit, do not know
each other, and also, are unaware of the precise geometry of the tunnel. We
wish to build a lattice model to explore the effects of communication on the
effective transport properties of these pedestrians. As modeling tool, we use a
particular type of particle system, known as zero range process (abbreviated
here ZRP), whose dynamics is affected by two thresholds. One threshold -
called activation threshold — models pedestrian communication efficiency in
the dark, while the other one — the saturation threshold — describes the tunnel
capacity. From the modeling point of view, the activation threshold is open
to many interpretations. In this Note, we associate the size of this threshold
not only with the geometric level of the possibility of communication, but also
with the willingness and ability of the pedestrians to process the transmit-
ted information to make a decision towards orientation to a potential exit or
choice of speed in the dark. We refer to this as level of trust. Essentially, a
small activation threshold implies in this context a high level of trust.

In Fig. 1 we sketch the meaning of the two thresholds, the precise mathemat-
ical definition is given in Section 2. Each solid circle represents a pedestrian,
whereas the associated open (bigger) circle represents its communication do-
main and level of trust. On the left bottom, the number of pedestrians in
the cell is so small that their typical distance is larger than the radius of the
communication domain. On the left top we see that if the number of pedes-
trian is large enough information can propagate throughout the cell. In other
words, we assume that the information can be efficiently transmitted among
the different pedestrians as soon as any single communication domain (the
open circles) intersects at least one other pedestrian. Essentially, we need here
a minimal degree of packing of the open circles, which is guaranteed in our
scenario by the activation threshold. When the number of pedestrians in a
cell is smaller than the activation threshold, the rate at which people leave
the cell is equal to a minimal quantum; on the other hand, above the activa-
tion threshold such a rate increases proportionally to the number of people in
the cell.

On the right of figure 1 we show how the bounded capacity of the tunnel
naturally leads to the introduction of a saturation threshold. In the bottom
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Figure 1. Sketch of pedestrians moving through a cell of the obscure tunnel driven
by a two-threshold biased dynamics.

part we indicate that, provided the number of pedestrians in the cell is smaller
than the number of people that can occupy positions on the boundaries of the
cell, the rate at which a pedestrian leaves the cell increases proportionally
to the number of people in the cell. On the other hand, if the number of
pedestrians in the cell is too high (see right top), then the number of them
exiting the cell per unit time saturates.

It is worth mentioning that thresholds-biased dynamics have been discussed
also for other transportation scenarios; compare e.g. [1,2,3] (group formation
and cooperation in the dark) and [4,5] (collective dynamics of molecular mo-
tors). This Note focusses on communication efficiency and is organized as
follows: our transport model is described in Section 2, while Section 3 con-
tains the hydrodynamic limit of the model as well as numerical illustrations
exploring the effects of communication on the effective transport properties of
the crowd of pedestrians traveling the obscure tunnel.

2 The model

The situation described in the Introduction will be modelled by means of a
one—dimensional zero range process (ZRP). We imagine to partion the tunnel
into cells and associate each cell with a variable counting the number of people
in that cell. We assume that, due to darkness and (possibly) panic, pedestrians
move at random and, when they decide to leave a cell, they move either forward
or backward with the same probability.

The key point in the definition of the model is choosing the rate at which peo-
ple leave cells: due to darkness no information is available about the number
of people in neighboring cells, hence we assume that the rate at which one
pedestrian leaves a cell depends only on the number of people in the cell itself.
The effects of the two thresholds described in the introduction will then come
into the game in the definition of such a rate function. We shall assume it
to be constantly equal to a minimal value up to the activation threshold and
then to increase linearly up to the saturation one.



The remarks above leads to the formulation of the following model. We con-
sider a positive integer L and define a zero range process [6,7] on the finite
torus (periodic boundary conditions) A := {1,...,L} C Z. Fix N € Z,
and consider the finite state or configuration space Q := {0,..., N}*. Given
w= (wy,...,wr) € Q the integer w, is called number of particle at site x € A
in the state or configuration w. We pick A, S € {1,...,N} with S > A,
the activation and saturation thresholds, respectively. We define the intensity
function

0 itk=0
1 if1<k<A
Ek—A+1 itA<k<S
S—A+1itk>S

for each k € Z,. The ZRP we consider here is the Markov process w; € (2,
with ¢t > 0, such that each site x € A is updated with intensity g(w,(t)) and,
once such a site x is chosen, a particle jumps with probability 1/2 to the
neighboring right site x + 1 or with probability 1/2 to the neighboring left site
x — 1. For more details on this modeling strategy, see [6].

The intensity function relates to the hopping rates r®*+) (w, (1)) = g(w,(t))/2
and coincides with the escape rate 7@ (w, (t)) + r@* D (w, () = g(w.(t))
at which a particle leaves the site . The thresholds intend to control the
escape rate. Essentially, the activation threshold A keeps the escape rate low
for all sites for which w,(t) < A, regardless the number of particles on z. The
saturation threshold S holds the escape rate fixed to a maximum value for all
sites for which w,(t) > S, regardless, again, the number of particles on z. In
the intermediate case, A < w,(t) < S the escape rate increases proportionally
to the actual number of particles on z, see (1). In the limiting case A = 1 and
S = 00, the intensity function becomes g(k) = k, for £ > 0, and thus the well-
known independent particle model is recovered. A different limiting situation
appears when the intensity function is 1 for any k£ > 1 and 0 for £ = 0. For this
we find a ZRP whose configurations can be mapped to a simple exclusion—like
model states (cf. e.g. [7]). Interestingly, we can tune between the two very
different dynamics either by keeping S = oo and varying A or by keeping
A =1 and varying S.

The aim of this paper is that of understanding the effect of the two thresholds
on the dynamics of particles (pedestrians in our crowd dynamics interpreta-
tion). This will be done in the next section by studying the behavior of the
diffusion coefficient in the hydrodynamic limit.



3 Hydrodynamic limit. Threshold effects

We study the hydrodynamic limit N, L. — oco. Particularly, we exploit the fact
that the intensity function is not decreasing and use well-established theories
to derive the limiting non—linear diffusion coefficient and the limiting current in
presence of the two thresholds. The Gibbs measure with fugacity z € R, of the
ZRP introduced above is the product measure v, (n;)v,(nz) - - - v.(n) on N* for
any n = (n1,...,m.) € NMwith v,(0) = C, and v, (k) = C.2*/[g(1) - - - g(k)] for
k > 1, where C, is a normalization factor depending on z, A, and S, namely,
1/C, =14+, 2%/[g(1) - - - g(k)]. To compute the mean value of the intensity
function g, we use v,(0) with g(0) = 0 to get

o) Zkfl

Z C’z—i—C’ng(l) g(k—l):Z' (2)

As a function of the activity, the expectation does not depend on the particular
choice of the intensity function.

For what concerns the hydrodynamic limit, a special role will be played by
the density

zgkum. (3)

Note that p(z) is an increasing function of the fugacity, indeed, 9p(z)/0z =
[v.(n}) — (v.(m))?]/z > 0. Hence, it is possible to define z(p) as the inverse
function of p(z). We observe that p is defined for any positive z if A is finite
and S = oo.

The evolution of the distribution of the particles on the space A under the ZRP
with thresholds A and S can be described in the diffusive hydrodynamic limit
via the time evolution of the density function p(x,t) with the space variable x
varying in the interval [0, 1] and for any time ¢ > 0; compare [6]. Consequently,
the continuous space density p(z,t) is the solution of the partial differential
equation 5 5 5

57 = ~gp7(0) with J(o)= —*D( P) 5P (4)
where the macroscopic flur J(p) incorporates the eﬁectwe diffusion coefficient
D given by

<mm=;wmwmﬂ- (5)

The coefficient D is computed in terms of the mean of the intensity function
evaluated against the single site Gibbs measure with fugacity corresponding
to the local value of the density. Consequently, D depends of the value of the
thresholds.

Let us discuss the effects induced by the two thresholds A and S on the



diffusion coefficient. We first recall some known results which are valid in the
two limiting situations A = 1 and S = oo (independent particle model) and
A = S (simple exclusion—like model). In the first case, one has C, = exp{—=z}.
Hence, by (3), it holds p(z) = z. Recalling (2) and the definition of z, we
have vz, [g(w1)] = v, [g(w1)] = p. By using (5), the diffusion coefficient reads
D(p) = 1. On the other hand, in the latter case, one has g(k) = 1 for any
k > 1and g(0) = 0. Hence, C, = 1—z, and it holds p(z) = z/(1—z). Here, one
finds the law D(p) = 1/(1+ p)?, cf. [8]. Now, we illustrate the general strategy
to compute the diffusion coefficient D for arbitrary values of the thresholds A
and S. To do so, we first compute p(z). The precise expression of the diffusion
coefficient can be then obtained using the general recipe in equation (5) and
recalling (2). Indeed,

0 0

Do) = s ofen)] = 5-200) = (510(2)) )

z=Z(p)

The explicit expression of 0p(z)/0z appearing in (6) is lengthy, hence we omit
it.

Fig. 2 shows the behavior of the diffusion coefficient as a function of the
local density, and parameterized by the values of the thresholds. The upper
left panel refers to the case A = 1 and for different values of S: the simple
exclusion—like model is recovered for S = 1, while the independent particle
model appears for S = oco. Similarly, the upper right panel illustrates the case
with S = oo and for different values of A: here the independent particle model
corresponds to A = 1 and the simple exclusion-like model is recovered for
A = oo. In both the upper panels of the figure we see that for the independent
particle case, the diffusion coefficient is constant with respect to the local
density.

Furthermore, in Fig. 2, we remark the loss of monotonicity of the function D(p)
for values of p exceeding some critical value (depending on the thresholds A
and S). The behavior of D(p) displayed in the lower left panel refers to the
case A = 3. Considering particularly the green curve corresponding to S = 10,
one sees the onset of a double loss of monotonicity of the function D(p): for
small values of the density, D stays close to the simple exclusion—like behavior
and decreases with p. After one first critical value of the density, it starts rising
up, until it drops down again, when p exceeds an upper critical value. This
indicates the presence of a double threshold for the intensity function given

by (1).

In the lower right panel of Fig. 2, the diffusion coefficient is plotted for dif-
ferent values of A for the case S = 10. The red and the blue curves refer to
the extreme independent—particle and simple—exclusion—like cases. When the
activation threshold is varied two effects are prominent: the non—monotonicity
of the diffusion coefficient with respect to density shows up and, at fixed local



—e—s=1 ’ —e—A=1
s=2 ' A=2
—e—5=5 —® A5

—— S —— A

o
o

Y
°
o

Ry

2 4 6 8 0 12 14 "o 2 4 6 8 0 12 14

—e—s=3 —o—A=1
s=4 : A=2
—e—s=10 —e—As5

—o—S=o0 —e—A=10

2 4 6 8 0 12 14 "o 2 4 6 8 0 12 14

Figure 2. Left panel, top row: Diffusion coefficient D(p) vs. p for A = 1 and for
different values of the saturation threshold, i.e., S = 1,2, 5, co. Right panel, top row:
Diffusion coefficient D(p) vs. p for S = oo and for different values of the activation
threshold, i.e., A =1,2,5,00. Left panel, bottom row: Diffusion coefficient D(p) vs.
p for A = 3 and for S = 3,4,10, 0c0. Right panel, bottom row: Diffusion coefficient
D(p) vs. p for S =10 and for A =1,2,5,10.

density, the diffusion coefficient decreases when A is increased. Interestingly,
note that for local densities close to 8 this appears not to be true: increasing
the activation threshold induces an increase in the diffusion coefficient. For
this very particular regime the dynamics accelerates due to the increase in the
activation threshold. In other words, it seems that close to the local density
8 (which, depending on the population type, is close to the maximum pedes-
trians density before asphyxiation starts off), higher mistrust speeds up the
dynamics.

Excepting the just mentioned non-intuitive regime, the effect of the two
thresholds on the diffusion coefficient can be summarized as follows: the smaller
the activation threshold A and/or the higher the saturation threshold S, the
higher s the diffusion coefficient, and therefore, the quicker the dynamics.
From the evacuation viewpoint, “a small activation threshold increases the
diffusion coefficient” means that

higher trust among pedestrians improves communication in the dark

and therefore the exits can be found easier. The size of the saturation threshold
simply decides on the exit capacity. Consequently, a higher saturation thresh-
old leads to an improved capacity of the exists (e.g. larger doors, or more exits
[9]) and therefore the evacuation rate is correspondingly higher.

Acknowledgements. We thank E. Presutti (GSSI L’Aquila, Italy), A. De
Masi (L’Aquila, Italy), and C. Landim (IMPA, Brazil) for useful discussions.
ENMC thanks ICMS (TU /e, Eindhoven, The Netherlands) for the very kind



hospitality and for financial support.

References

[1] Cirillo, E.N.M., Muntean, A.: Can cooperation slow down emergency
evacuations?. Comptes Rendus Mecanique 340, 626—628 (2012).

[2] Muntean, A., Cirillo, E.N.M., Krehel, O., Bohm, M. Pedestrians moving in the
dark : balancing measures and playing games on lattices. In A. Muntean &
F. Toschi (Eds.), Collective dynamics from bacteria to crowds : an excursion
through modeling, analysis and simulation (pp. 75-103). Vienna: Springer.

[3] Cirillo, E.N.M., Muntean, A.: Dynamics of pedestrians in regions with no
visibility : a lattice model without exclusion. Physica A: Statistical Mechanics
and Its Applications, 392(17), 3578-3588 (2013).

[4] Leibler, S, Huse, D. A.: Porters versus rowers: a unified stochastic model of
motor proteins. J. Cell Biol. 121(6), 1357D1368 (1993).

[6] Campas, O., Kafri, Y., Zeldovich, K. B., Casademunt, J., Joanny, J.-F.:
Collective dynamics of interacting motors. Phys. Rev. Lett. 97, 038101 (2006).

[6] De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits,
Springer—Verlag, Berlin Heidelberg (1991).

[7] Evans, M. R., Hanney, T.: Nonequilibrium statistical mechanics of the zero—
range process and related models. J. Phys. A: Math. Gen. 38, R195-R240 (2005).

[8] Ferrari, P. A., Presutti, E., Vares, M.E.: Local equilibrium for a one dimensional
zero range process. Stoch. Proc. Appl. 26, 31-45 (1987).

[9] K. Fridolf, E. Ronchi, D. Nilsson, H. Frantzich, Movement speed and exit choice

in smoke-filled rail tunnels. Fire Safety Journal 59, 8-21, (2013).



