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Identification of a response amplitude operator
for ships

Giovanni A. Bonaschi Olena Filatova Carlo Mercuri∗

Adrian Muntean Mark A. Peletier Volha Shchetnikava
Eric Siero Iason Zisis

Abstract

At the European Study Group Mathematics with Industry 2012
in Eindhoven, the Maritime Research Institute Netherlands (MARIN)
presented the problem of identifying the response amplitude operator
(RAO) for a ship, given input information on the amplitudes of the sea
waves and output information on the movement of the ship. We ap-
proach the problem from a threefold perspective: a direct least-squares
approach, an approach based on truncated Fourier series, and an ap-
proach using low-dimensional measures of the RAO. We give a few rec-
ommendations for possible further investigations.

Keywords: Parameter/structure identification, inverse problem,
response amplitude operator, ship structure, fatigue estimation

1 Introduction

In the present paper we deal with a problem proposed by MARIN during the
SWI 2012 workshop in Eindhoven. MARIN, the Maritime Research Institute
Netherlands, is an independent service provider for the maritime industry.
MARIN’s customers include commercial ship builders, fleet owners, navies,
naval architects, and offshore companies.

The problem we tackle here is the identification of the structure response
amplitude operator (RAO) of a 230m long FPSO, given sets of input-output
data, which will be explained in Section 2.

A floating production, storage and offloading (FPSO) unit is a floating
vessel used by the offshore industry for the storage and processing of oil and
gas, and it is typically moored at a fixed position at sea. The structure is
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exposed to a natural process of degradation related to the cyclic loading of
the structure through time: fatigue. This is due to continuously incoming
sea waves and wind. This topic has been studied extensively in the literature
according to different points of view; see for example [1, 3, 4] and the references
mentioned therein.

The interest of MARIN in the identification of the RAO lies in its use to
estimate the expected time until the formation of fatigue cracks. The methods
that we discuss in this report might be used to improve the accuracy of numer-
ically calculated RAOs, and lead to a better estimate of the fatigue lifetime.
We keep this in mind when discussing the different possible working strategies.

2 The data

The data provided by MARIN are generated by two different detection devices.

• A buoy at some distance from the FPSO measures water surface height
and angle, and converts these into a wave energy spectrum. For each 30-
minute interval indexed by k this results in a discretely defined function
S
(k)
ζ (ω, θ), which gives the energy contained in waves moving in direction
θ with frequency ω.

• A number of strain gauges on the FPSO measures a local strain in the
structure, and converts this into another energy spectrum. This results
in a discretely defined function S

(k)
R (ω, d(k)), measured at the same time

k, which gives the energy contained in harmonic bending modes with
frequency ω.

• The draft d(k) is the vertical distance between the waterline and the
bottom of the hull at the time of measurement k. This draft changes
over time, since the structure accumulates oil and gas over time, and
periodically offloads it to transport ships. According to MARIN, the
draft has a significant effect on the behaviour of the structure, and this
is why this draft is taken into account.

The measurement data is organized as follows.

(θ) The measurements of Sζ are taken along discretized directions of 4 de-
grees each (91 in total; θ1 = 0 and θ91 = 360 coincide).

(ω) The frequency range for ω is 0.025 − 0.580 Hz for Sζ and 0 − 0.995 Hz
for SR. For Sζ there are 64 different frequencies, 200 for SR. Since the
available data for SR and Sζ do not correspond to the same frequency,
we convert the values of SR to the 64-value discretization of Sζ by inter-
polation. As a consequence we do not analyse values of SR at frequencies
greater than 0.58Hz and below 0.025Hz.
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(d) The draft of the vessel ranges from 9 to 15 (meters) with ∆d = 0.5, so
that there are 12 different drafts.

(k) Measurements are taken along a period of one year with different draft
values as shown in Table 1.

Table 1: Number of measurements for different periods and drafts.

Draft July 2007 April 2008 May 2008 Sept 2008 Total
9.0-9.5 0 91 91
9.5-10.0 0 45 45
10.0-10.5 221 207 428
10.5-11.0 710 555 1265
11.0-11.5 1482 422 1904
11.5-12.0 1408 464 1872
12.0-12.5 893 588 1481
12.5-13.0 1052 124 1176
13.0-13.5 902 426 1328
13.5-14.0 370 783 1153
14.0-14.5 109 202 311
14.5-15.0 0 92 92

Total 7147 3999 11146

3 The mathematical problem

We now describe the mathematical problem that we consider. The response
of the FPSO is assumed to follow linear response theory, resulting in the (the-
oretical) equation (see [1, 2, 3])

∀ω, d : SR(ω, d) =

∫
ΦR(ω, θ, d)Sζ(ω, θ) dθ, (1)

where, as we described above, SR and Sζ are respectively the total response of
the structure and the profile of incoming waves at different angle θ, at a certain
frequency ω. SR, Sζ and ΦR are positive functions; ΦR and SR are assumed
to depend also on the draft d. The unknown function ΦR is, by definition, the
response amplitude operator (RAO), and its identification is the aim of this
work.

We first convert equation (1) into a discrete, experiment-dependent version:

∀ω, k : S
(k)
R (ω, d(k)) =

∑
θ

ΦR(ω, θ, d(k))S
(k)
ζ (ω, θ). (2)
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We will also reduce to the case of a single draft, using only the 1176 data
points corresponding to draft range 12.5–13.0. Therefore we can omit the
explicit draft dependence in SR and ΦR, and then the equation becomes

∀ω, k : S
(k)
R (ω) =

∑
θ

ΦR(ω, θ)S
(k)
ζ (ω, θ). (3)

The central question of this paper is therefore:

Can we construct methods for the determination of ΦR in (3), given
data on SR and Sζ?

4 Inverse problems and least squares

This problem is a classical inverse problem: determining a physical law from
experimental data (see e.g. [6]). For each ω we need to determine the 91 values
of ΦR(ω, ·); since for each ω we have 1176 data points to do so, this is an a
priori strongly overdetermined problem. The method of first choice in this
situation is the least-squares solution.

Unconstrained least squares

The least-squares method can be interpreted as a method of fitting data. The
best fit in the least-square sense is that instance of the model for which the
sum of squared residuals has its lowest value, the residual being the difference
between an observed value and the value given by the model.

Fix ω, and write ak,j := S
(k)
ζ (ω, θj), bk := S

(k)
R , and xj := ΦR(ω, θj). Writing

A for the matrix of ak,j, equation (3) becomes

Ax = b ⇐⇒ ∀k :
∑
j

ak,jxj = bk. (4)

A least-squares solution of (4) is a vector x that minimizes the residual of (4),
i.e.

x = arg min
x
‖b− Ax‖22, (5)

where ‖ · ‖2 is the standard Euclidean norm.
If A has maximal rank, then this x is given by

x = (ATA)−1AT b.

The MATLAB backslash operator implements this solution concept.
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Constrained least squares

A least-squares solution has no reason to be nonnegative, while the RAO ΦR

is necessarily nonnegative. The minimization problem (5) has a natural gen-
eralization

x = arg min
x≥0

‖b− Ax‖22,

in which x ≥ 0 should be interpreted as component wise non-negativity. In
MATLAB the routine lsqnonneg implements this constrained least-squares
solution.

5 Organization of the report

During the Study Group three different approaches were investigated.

1. The first approach is to apply the constrained or unconstrained least-
squares method directly. In an attempt to reduce the impact of noise,
we first made a selection of the most relevant data. This approach is
outlined in Section 6.

2. A second approach used a truncated Fourier series representation of ΦR,
and determined the RAO again by least-squares fitting (Section 7).

3. A final approach focused on low-dimensional properties of the RAO (see
Section 8).

6 Ansatz-free solutions after data selection

In this approach the idea is to solve equation (3) for fixed frequency ω and
then repeat for all 64 frequencies for which there are both respons and wave
data available. For fixed ω the equation reads:

SR = ΦR(θ1)Sζ(θ1) + ΦR(θ2)Sζ(θ2) + ...+ ΦR(θ90)Sζ(θ90);

where ΦR(θ1),ΦR(θ2), ...,ΦR(θ90) are 90 unknowns.1 Thus if one obtains 90
of these equations, then, generically, it should be possible to solve for the
unknowns. From every simultaneous measurement of SR and Sζ it is possible
to obtain such an equation.

1Since both 0 and 360 degrees are represented in the data, it has been decided to exclude
the data for 360 degrees from the calculations in this approach.
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6.1 Data selection

In real life some of the data are bad. For instance, when a ship passes the
measuring buoy, this affects Sζ , but does not change SR. The relationship
resulting from this measurement will be inherently false. To reduce the impact
of erroneous data we make a selection, by taking at given frequency ω the data
with the highest response SR at that frequency. The idea is that, to obtain
a good relation at a given frequency, the frequency should be represented in
the measurement. This is guaranteed if the FPSO shows a response at this
frequency.

Is, for fixed frequency, every angle represented in some of the chosen data?
If Sζ(ω, θ) is small in every measurement, then the response of the ship to
components of waves coming from this angle is impossible to determine. As a
consequence the RAO may have a peak at this angle, without any meaning.
This corresponds to the RAO being (partly) underdetermined. This has not
been checked during the Study Group.
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Figure 1: unconstrained RAO with
negative components.
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Figure 2: RAO calculated from data
with 100 highest stress responses.
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Figure 3: RAO calculated from data
with 200 highest stress responses.
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6.2 Least-squares solutions

Use of the unconstrained least squares solver (the MATLAB backslash opera-
tor) leads to a solution with negative components. This is illustrated by Figure
1, where the RAO computed from 100 data points with the highest stress re-
sponse is plotted. Along the vertical axes the component of the RAO ΦR(ω, θ)
is drawn for each of the 90 angles θ and each of the 64 frequencies ω. Since
the RAO should be non-negative, the unconstrained solver is not useful.

Thus we switched to the constrained least-squares lsqnonneg solver, since
this solver finds a least squares solution under the constraint that every com-
ponent must be non-negative. In figures 2 and 3, results are shown that are
computed using respectively the 100 and 200 data with the highest stress re-
sponse, for every frequency separately. As one can see, the solutions are very
spiky. Moreover, it has been observed that these spikes have the tendency to
move to a neighbouring angle upon small changes in the input data.

If we fix θ = 0, then Figure 4 shows graphs of ΦR as a function of ω, which
corresponds to taking a slice from Figures 2 and 3. The peak of the solid red
line at ω = 0.8 is not present in the dashed blue line. If we fix ω = 0.8, then
Figure 5 shows graphs of ΦR as a function of θ, which corresponds to taking a
slice in the other direction. From this graph we see that for the ‘dashed blue’
RAO based on 200 data, there is a peak for ω = 0.8 near θ = 0, at θ = 352.
This is illustrated further by the behaviour near θ = 150. Although in Figure
5 the RAOs practically coincide near θ = 150, this will not be reflected by
taking slices for fixed θ = 144 or θ = 148.

6.3 Intermediate conclusion

The calculations shown in this section suggest that using the least-squares
method one can calculate an approximate RAO, but the resulting RAO will
be rather sensitive to differences in data point selection. Because the computed
RAOs contain spikes instead of having a more smooth profile, it is not possible
to reliably plot ΦR(ω) for a fixed θ.

7 Fourier expansions

7.1 Motivation

In the previous section we showed that, most likely, the straightforward least-
squares approach leads to a sensitive dependence of the RAO on the choice of
the data. This is a common occurrence when dealing with inverse problems,
and is intimately related to the intrinsic ill-posedness of the problem (see again
e.g. [6]). We now investigate whether this issue can be limited by restricting
the set of RAO’s to a smaller set.
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We postulate a solution ΦR of the form

ΦR(ω, θ) = K(ω)Ψ(θ). (6)

Such an expression allows to consider dependency on ω and θ separately, and
simplifies our calculations. For more precise approximation it is also worth-
while to replace (6) by

ΦR(ω, θ) =

n∑̀
`=0

K`(ω)Ψ`(θ). (7)
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Due to the anisotropy of the ship’s geometry it was suggested by MARIN to
choose Ψ`(θ) = cos(`θ). Thus the final form of our approximation Ansatz is

ΦR(ω, θ) =

n∑̀
`=0

K`(ω) cos(`θ). (8)

This Ansatz can be viewed as representing ΦR by a truncated Fourier series in
the terms of θ variable.

This approach again defines a linear least squares problem, which we refer
to as the LLSP. As a result we expect to find K`(ω) which determine the final
approximation of the solution. We will estimate residuals for different numbers
of terms n` in (8). Moreover the relative error of the solution ΦR(ω, θ) and
SR(ω) predicted by our model will be estimated in section 7.4 for different
amounts of data used.

7.2 Implementation of the model

For each fixed ω we define

P :=

 S
(1)
ζ (ω, θ1) . . . S

(N)
ζ (ω, θ1)

. . . . . . . . .

S
(1)
ζ (ω, θ91) . . . S

(N)
ζ (ω, θ91)

 , (9)

and

C :=


1 cos θ1 . . . cosn`θ1
1 cos θ2 . . . cosn`θ2
...

...
1 cos θ91 . . . cosn`θ91

 . (10)

The LLSP then consists of solving, in the least-squares manner, the equation
Ax = b, with

A = P TC, b = [S
(1)
R (ω), . . . , S

(N)
R (ω)]T , (11)

and x = [K1(ω), . . . , Kn`
(ω)]T .

By repeating the procedure for each ω we obtain K` and thus ΦR(ω, θ).

7.3 Analysis of the method

It is important to understand how well this model constructs ΦR and predicts
SR. On the other hand, we wish to analyze to which extent the constructed
ΦR is data-dependent.
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7.4 Approximation error

First we analyze the approximation error, which is the discrepancy between
the exact values of SR and their approximation by the LLSP.

We split the total available data for the draft 12.5–13.0 into disjoint groups
of different sizes. We fix a number N of data points. Let Dκ, κ = 1, 2 be two
disjoint sets of data of size N . Also let K [κ] be the solution of the LLSP with
data Dκ, i.e. the minimizer of the norm of the residuals for data set Dκ. In
other words, we have

K [κ](ω) := arg min
x

∥∥S[κ]
R (ω)− Ax

∥∥
2
,

where S
[κ]
R (ω) is the N -vector of response data corresponding to data set Dκ

and A is defined in (11).
Then, for each frequency ω, we define the approximation error of LLSP-

solution κ for the data Dλ as follows:

F (ω,K [κ], Dλ) :=
‖S[λ]

R (ω)− AK [κ](ω)‖2
‖S[λ]

R (ω)‖2
, κ, λ = 1, 2, (12)

where S
[κ]
R (ω) is the N -vector of response data corresponding to data set Dκ,

and K [λ] is the solution of the LLSP for the data set Dλ.
First we study the influence of the number N of data points. We choose two

sets D1 and D2 of size N = 350 corresponding to the data from February and
August 2008. We compare F (ω,K [1], D1) and F (ω,K [2], D1) for the amount
of terms in (8) n` = 3. This can be interpreted as a measure of how well data
D2 predicts data D1.
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Figure 6: The approximation error for F (ω,K [1], D1) and F (ω,K [2], D1), N =
350.

The high value of the F (ω,K [2], D1) in Figure 6 may well be explained by
the fact that during different seasons the intensity of some frequencies differs.
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Figure 7: The approximation error for F (ω,K [2], D2) and F (ω,K [1], D2), N =
350.

We next compare F (ω,K [2], D2) and F (ω,K [1], D2). In Figure 7 we see that
the prediction of the August response by the February data is much better
than vice versa. It can be useful to see how this fact changes with increasing
the size of data sets used.
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Figure 8: The approximation error for F (ω,K [1], D1) and F (ω,K [2], D1), N =
500.

From Figures 8–11 it is clear that the bigger data sets we use, the closer
to each other the approximation errors of the corresponding solutions become.
But for several small frequencies the approximation error is still very high. We
believe that this happens due to measurement errors of the experiments.

At this stage the conclusion is that it is best to use the biggest available
amount of data for the further analysis of the approximation error on the
number of terms in expansion (8). Now, in Figures 12–15, we vary the number
of terms n` and fix the size of the data sets N = 715, as this is the half of the
available data for the chosen draft. The case n` = 0 corresponds to the fact
that ΦR is approximated by a function that is constant in θ.
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715.
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We study not only the approximation error but also two other values of
interest (ε(ω) and ε(θ) defined in equations (13),(14)). The first of them is the

relative error of Φ
[κ]
R with respect to Φ

[λ]
R for each frequency:

ε(ω) =
‖Φ[κ]

R (ω, ·)− Φ
[λ]
R (ω, ·)‖2

‖Φ[κ]
R (ω, ·)‖2

, (13)

where Φ
[κ]
R (ω, θ) and Φ

[λ]
R (ω, θ) are approximated values of ΦR calculated via

corresponding solutions K [κ] and K [λ] of LLSP using two distinct data sets Dκ

and Dλ of the same size. The norms above are the L2-norms over θ.
A similar quantity can be calculated for each angle θ, where the norms are

calculated by summing over ω:

ε(θ) =
‖Φ[κ]

R (·, θ)− Φ
[λ]
R (·, θ)‖2

‖Φ[κ]
R (·, θ)‖2

. (14)
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Figure 12: The approximation error for F (ω,K [1], D1) and F (ω,K [2], D1), n` =
0. Note that ε(θ) is constant, since with n` = 0, ΦR is independent of θ.
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Figure 13: The approximation error for F (ω,K [1], D1) and F (ω,K [2], D1), n` =
2.

Increasing n` gives the system more freedom to adjust the parameters.
From this point of view using more terms is a good idea. At the same time it
leads to an increasing amount of oscillations, as can be seen in Figures 12-15.
From the numerical experiments we suggest to use n` = 2, because of two
reasons:

• the peak of the approximation error for small frequencies is not high yet;

• the relative errors ε(ω) and ε(θ) are still reasonable (below 1).
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Figure 14: The approximation error for F (ω,K [1], D1) and F (ω,K [2], D1), n` =
6.
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Figure 15: The approximation error for F (ω,K [1], D1) and F (ω,K [2], D1), n` =
10.
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7.5 Prediction of SR

The comparison of predicted (dashed line) and experimental dependence (solid
line) of ΦR on ω is done for different data files. We again use the set of 715
files and predict the values of SR for three specific data points which are
not included in those 715 files. All calculations are done for nl = 2. Also
corresponding ΦR(ω) for several angles is presented in Figures 19-21.
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Figure 16: The predicted values
have an overshoot.
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Figure 17: The predicted values are
too small.
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Figure 18: The predicted and experimental behavior fit well together.

Figures 16–18 show that, depending on the date which we pick for forecast,
the result differs. One way of explaining this phenomenon is due to experi-
mental errors. Results obtained for the 1st and 2nd of July 2008 on Figures 22
and 23 are examples of this. Usually the response on consequent days changes
continuously but for these dates it is not the case.
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Figure 19: The prediction of
ΦR(ω, 60).
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Figure 20: The prediction of
ΦR(ω, 120).
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Figure 21: The prediction of ΦR(ω, 256).

Another reason could be an insufficient period of measurements used in cal-
culations. Therefore our recommendation is to use the observations of several
years to predict ΦR.

7.6 Intermediate conclusions

From these calculations we draw the following conclusions:

1. If the number of data points is large enough (N ≥ 500 seems a reasonable
lower bound) then the cross-approximation error F (ω,K [2], D1) often is
practically as good as the self-approximation error F (ω,K [1], D1). In
words: the least-squares error for data 1, based on the parameters de-
termined with data 2, is close to the error calculated with the optimal
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Figure 22: Results for the 1st of July.
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Figure 23: Results for the 2nd of July.

parameters for data 1. (See e.g. Figures 12–15).

2. The number n` of Fourier modes is a free parameter in this inverse prob-
lem. By definition, the self-approximation error decreases with increasing
n`, since the minimization is performed over larger sets. But for larger
n`, the Fourier coefficients K` becomes highly sensitive to the choice of
data. The calculations done above suggest to keep n` low, e.g. n` ≈ 2.

8 Reduced measures

During the Study Group the question arose whether the identification of the
RAO might be used to detect fatigue: can fatigue cracks determine a modified
stress response, and therefore result in a modified RAO? By tracking changes
in the RAO over time, we thought that these changes might be detected. This
idea turned out to be incorrect. Indeed a fatigue crack cannot determine any
significant change in the vertical bending moment, by which the global behav-
ior of the structure is analyzed. This consideration has been communicated to
us by MARIN.

In the spirit of the previous section, we focus here on a particular Ansatz,
investigating whether the RAO could be determined with sufficient accuracy
and confidence. The ill-posed nature of the problem suggests to replace the
aim of determining ΦR by determining some low-dimensional properties of ΦR

that might (a) function as fatigue markers, and (b) be more stable.
Given that our data only spans 15 months, and that the fatigue time scale

is expected to be longer than this, it was difficult to test any hypothesis con-
cerning stability with respect to time. Instead, we investigate below a simple
hypothesis concerning a special form of RAO with respect to the dependence
on θ and ω.
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Equation (3) can be written as

∀ω, k :
∑
θ

ΦR(ω, θ)S(k)(ω, θ) = 1, (15)

where S(k)(ω, θ) := S
(k)
ζ (ω, θ)/S

(k)
R (ω). One Ansatz for ΦR would be that ΦR

is of the form
ΦR(ω, θ) = c(θ)(S(k))−1(ω, θ), (16)

for some function c(θ) satisfying
∑

θ c(θ) = 1. Note that since ΦR is k-
independent, this requires S(k) also to be k-independent. This is a condition
that we can test directly the available experimental data.

8.1 Data analysis

We analyse if the ratio (S(k))−1 is data- (k-) independent. This analysis is
achieved by means of an estimator. We average the ratio among measurements,
but they must belong to the same draft to avoid the draft dependence (that
will be analysed in the following). So we define

fd(ω, θ) :=
1

S̃(ω, θ, d)
=

∑
k∈I(d) S

−1
k (ω, θ, d)

#I(d)
, (17)

where I(d) is the set of all the measurements obtained for a certain draft.
From now on for brevity we write S−1k instead of (S(k))−1. If there is an
independence; then we expect the standard deviation to be small. We analyse
then the relative error:

gd(ω, θ) = σ2 =

∑
k∈I(S

−1
k − S̃−1)2

#I
, (18)

relative error := hd(ω, θ) =

√
g(ω, θ)

f(ω, θ)
. (19)

A suitable way to analyse the relative error is to perform the average of the
relative error over angles or frequencies:

a(ω) :=

∑
θ h(ω, θ)

#θ
, b(θ) :=

∑
ω h(ω, θ)

#ω
. (20)

The above formulas give us an estimator of the oscillations occurring in the
data, depending only on one variable. We perform this procedure because
we cannot represent all the values of h(ω, θ) (it is a 90 ∗ 64 matrix). The
problem that can appear when averaging is related to huge oscillations giving
an irrelevant average. This will not be our case as it will be showed in the
following.
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8.2 Draft dependence

We need to make a reasonable choice of a single draft. To do this we analyze
the total average of the relative error to check to which extent the independence
(of the ratio with respect to data) is a reasonable assumption and to see which
measurements present a strong correlation:

c(d) :=

∑
θ

∑
ω h(ω, θ, d)

#ω ×#θ
=

∑
θ b(θ, d)

#θ
=

∑
ω a(ω, d)

#ω
. (21)

Table 2 shows the value of c(d) for each d. Note that the values for the

c(d) 142% 12.1% 3.8% 2.2% 1.7% 2.7%
Draft 9.5 10 10.5 11 11.5 12
c(d) 2.2% 2% 2% 2.4% 7.1% 9.5%

Draft 12.5 13 13.5 14 14.5 15

Table 2: For each draft d the value of c(d) estimates to which extent the
function S−1k can be considered measurement- (k-) independent.

middle range of d are relatively small, giving support to the conjecture (16).
In choosing a specific draft d for further analysis, it makes sense to avoid the
extremal values for which c(d) is larger.

8.3 Correlation

In Figure 8.3, we plot the functions a(ω), b(θ) defined in (20). They refer to
the fixed draft 12–12.5 m, that presents a low total average (c(d)).

Figure 24: Relative standard deviations.
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We note that the values are relatively small and they show weak fluctua-
tions. This gives more relevance to the choice of the estimator c(d) and it is
a way to quantify the independence of the ratio S−1k with respect to measure-
ments.

8.4 Time evolution

The small values of c(d) allow us to focus in the data analysis on a single draft.
We now want to investigate whether the time scale of the data measurements
could provide a reasonable RAO. A necessary condition is that the vessel does
not experience excessive changes in its structure. In order to check this fact,
we choose suitable estimators and we analyze their values on each month in
a time range of 15 months. For fixed θ, we consider Nexp measurements in a
certain time range. We use (a normalized) S−1 as a probability distribution,
then, and we compute its ω-average for each θ:

ω
(k)
θ =

∑
ω ωS

−1(ω, θ)∑
ω S
−1(ω, θ)

, k = 1, . . . , Nexp. (22)

Now we average along measurements and determine the mean value and stan-
dard deviation at fixed angles:

ω̄θ :=
1

Nexp

Nexp∑
k=1

ω
(k)
θ , (23)

σ2
θ :=

1

Nexp

∑
(ω̄θ − ω(k)

θ )2, (24)

where ω
(k)
θ is given by (22). ω̄θ can be interpreted as an average eigenfrequency

of the structure.
In Table 3 are shown average and standard deviations related to five angles,

in a time range of 15 months. We note that the values at 0 and 360 coincide,

θ 0 90 180 270 360
ω̄θ 0.1337 0.1359 0.1396 0.1704 0.1337
σθ 0.0255 0.0331 0.0426 0.0516 0.0264

Table 3: Angles, averages and standard deviations.

confirming the expected periodicity in θ of the data sets.
In Figure 25 we plot the average and standard deviations for each month,

i.e. ω̄θ and σ2
θ calculated for each month separately. We choose two angles,

θ = 90 and θ = 270. The number of measurements per month is given by the
following table:
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1st 2nd 5th 8th 9th 10th 12th 13th 14th 15th
106 59 140 473 37 78 11 109 351 117

Table 4: Measurements analyzed per months, starting from July 2007, ending
in September 2008.

Figure 25: Monthly averages ω̄θ and standard deviations σθ for two angles
θ = 90, 270.

8.5 Intermediate conclusions

Figure 25 shows no significant drift of ωθ over the five months, and the fluc-
tuations are of the magnitude that is to be expected. This observation can be
interpreted as suggesting that the object that we calculate here (the expected
frequency, according to the weighting given by the ‘probability distribution’
S−1) is approximately constant over the 15 months of the data. This consid-
eration together with Table 2 estimates to which extent (16) is a reasonable
choice.

An interesting analysis would be to have a θ-dependent picture of the be-
havior of the structure measured by the fluctuations of the monthly averages
and their relative standard deviation, which, during SWI 2012, we thought to
be more considerable in those directions where the vessel is affected by more
relevant damage and structural changes. This idea turned out to be wrong,
after discussing with our collaborator from MARIN, as we already mentioned
at the beginning of this section.
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9 Summary and conclusions

We have seen that despite the large amount of data, determining the RAO
to any accuracy is a hard problem. This is illustrated, for instance, in the
strong data-dependence that we observed when doing direct (constrained)
least-squares fitting in Section 6. This is a classical difficulty in inverse prob-
lems, and is related to the ill-posed nature of the problem.

The classical ‘solution’ to this difficulty is to restrict the class of admissible
RAOs and perform the fitting in this smaller class. This is the core idea in
Section 7 and Section 8 (see respectively equations (6) and (16)), where a
special form for RAO has been postulated. This restriction brings in Section
7 the identification of an RAO.
A different form of RAO has been considered in Section 8, where initially
we tried to address the question whether the data could provide information
about existence of fatigue-induced drift. The performed data analysis is meant
to verify to which extent (confidence) the Ansatz (16) is a reasonable guess,
as a preliminary step in the identification of an RAO.

There are many possible avenues for further research and algorithm con-
struction. Below we sum up those that we considered during the five-day SWI
2012 study group to be the most important.

• All methods should be set in a suitable stochastic framework in order to
treat the unavoidable noise brought in by the measurements. We expect
a faithful modelling of the characteristics of this noise will improve the
quality of the fitting methods.

• Connected to the above consideration is the study of the rank of the
available data files. Referring for simplicity to the Ansatz-free approach,
it would worth analyzing how independent the data are, in order to yield
the solvability of the linear system of equations. Intuitively, this is related
to the non-vanishing determinants of the sub-matrices associated to the
linear system.
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