19 research outputs found

    A unified vegetation index for quantifying the terrestrial biosphere

    Get PDF
    Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross primary productivity, and sun-induced chlorophyll fluorescence. Results suggest that the statistical approach maximally exploits the spectral information and addresses long-standing problems in satellite Earth Observation of the terrestrial biosphere. The nonlinear NDVI will allow more accurate measures of terrestrial carbon source/sink dynamics and potentials for stabilizing atmospheric CO2 and mitigating global climate change

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Learning User's Confidence for Active Learning

    No full text
    In this paper, we study the applicability of active learning (AL) in operative scenarios. More particularly, we consider the well-known contradiction between the AL heuristics, which rank the pixels according to their uncertainty, and the user's confidence in labeling, which is related to both the homogeneity of the pixel context and user's knowledge of the scene. We propose a filtering scheme based on a classifier that learns the confidence of the user in labeling, thus minimizing the queries where the user would not be able to provide a class for the pixel. The capacity of a model to learn the user's confidence is studied in detail, also showing that the effect of resolution in such a learning task. Experiments on two QuickBird images of different resolutions (with and without pansharpening) and considering committees of users prove the efficiency of the filtering scheme proposed, which maximizes the number of useful queries with respect to traditional AL

    Remote sensing image segmentation by active queries

    No full text
    Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristics aiming at the search of the most informative pixels to optimize model's performance. Unlike standard methods that concentrate on model optimization, here we propose a method inspired in the cluster assumption that holds in most of the remote sensing data. Starting from a complete hierarchical description of the data, the proposed strategy aims at sampling and labeling pixels in order to discover the data partitioning that best matches with the user's expected classes. Thus, the method combines active supervised and unsupervised clustering with a smart prune-and-label strategy. The proposed method is successfully evaluated in two challenging remote sensing scenarios: hyperspectral and very high spatial resolution (VHR) multispectral images segmentation. (C) 2011 Elsevier Ltd. All rights reserved

    Graph Matching for Adaptation in Remote Sensing

    No full text
    We present an adaptation algorithm focused on the description of the data changes under different acquisition conditions. When considering a source and a destination domain, the adaptation is carried out by transforming one data set to the other using an appropriate nonlinear deformation. The eventually nonlinear transform is based on vector quantization and graph matching. The transfer learning mapping is defined in an unsupervised manner. Once this mapping has been defined, the samples in one domain are projected onto the other, thus allowing the application of any classifier or regressor in the transformed domain. Experiments on challenging remote sensing scenarios, such as multitemporal very high resolution image classification and angular effects compensation, show the validity of the proposed method to match-related domains and enhance the application of cross-domains image processing techniques

    Graph Matching for Adaptation in Remote Sensing

    No full text

    Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces

    No full text
    This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the gamma-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined
    corecore