288 research outputs found

    Assessing burned areas in wildfires and prescribed fires with spectral indices and SAR images in the Margalla Hills of Pakistan

    Get PDF
    The extent of wildfires cannot be easily mapped using field-based methods in areas with complex topography and in those areas, the use of remote sensing is an alternative. This study first obtained images from the Sentinel-2 satellites for the period 2015-2020 with the objective of applying multi-temporal spectral indices to assess areas burned in wildfires and prescribed fires in the Margalla Hills of Pakistan using Google Earth Engine (GEE). Using those images, the Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR), which are often used to assess the severity of fires, were calculated for wildfires and prescribed fires. For each satellite image scene, spectral indices values were extracted for the 5th, 20th, 40th, 60th, 80th and 95th percentiles of pixels of each burned area. Then, box plots representing the distribution of these values were plotted for each satellite image to identify whether the regeneration time subsequent to a fire, also known as the burn scar, and the severity of the fire differed between the autumn and summer wildfires, and with prescribed fires. A statistical test revealed no differences for the re-generation time amongst the three categories of fires, but that the severity of summer wildfires was significantly different from that of prescribed fire, and this, for both indices. Second, SAR images were obtained from the Sentinel-1 mission for the same period as that of the optical imagery. A visual interpretation of the 34 variables of SAR response revealed that the 95th percentile of the Normalized Signal Ratio (NSR p_95) is adequate to detect burned areas in the study area. Moreover, it was found that 95% of the plots analyzed by the 80th percentile NSR (NSR p_80) showed a good response to fires in comparison to the spectral indices

    Evolutionary Trajectories of Avian Avulaviruses and Vaccines Compatibilities in Poultry.

    Get PDF
    Newcastle disease virus (NDV) causes one of the highly infectious avian diseases in poultry leading to genuine financial misfortunes around the world. Recently, there has been an increasing trend in the number of ND-associated outbreaks in commercial Jordanian poultry flocks indicating a possible complex evolutionary dynamic of NDV infections in the country. To underpin the dynamics of circulating NDV strains and to assess the vaccine-escape potential, a total of 130 samples were collected from different poultry flocks in six Jordanian Governorates during 2019-2021. Twenty positive isolates, based on real-time reverse transcriptase PCR, were used for further genetic characterization and evolutionary analysis. Our results showed that there is a high evolutionary distance between the newly identified NDV strains (genotype VII.1.1) in this study and the commercially used vaccines (genotypes I and II), suggesting that circulating NDV field strains are under constant evolutionary pressure. These mutations may significantly affect flocks that have received vaccinations as well as flocks with insufficient immunity in terms of viral immunity and disease dynamics. To assess this further, we investigated the efficacy of the heterologous inactivated LaSota or homologous genotype VII.1.1 vaccine for their protection against virulent NDV in chicken. Vaccine-induced immunity was evaluated based on the serology, and protection efficacy was assessed based on clinical signs, survival rates, histopathology, and viral shedding. Chickens vaccinated with the inactivated genotype VII.1.1 based vaccine showed 100% protection with a significant reduction in virus shedding, and ameliorated histopathology lesions compared to LaSota vaccinated chicks that showed 60% protection. These results revealed that the usage of NDV inactivated vaccine from the circulating field strains can successfully ameliorate the clinical outcome and virus pathobiology in vaccinated chicks and will serve as an effective vaccine against the threat posed by commonly circulating NDV strains in the poultry industry

    Gapless spinons and a field-induced soliton gap in the hyper-honeycomb Cu oxalate framework compound [(C2_{2}H5_{5})3_{3}NH]2_{2}Cu2_{2}(C2_{2}O4_{4})3_{3}

    Full text link
    We report a detailed study of the specific heat and magnetic susceptibility of single crystals of a spin liquid candidate: the hyper-honeycomb Cu oxalate framework compound [(C2_2H5_5)3_3NH]2_2Cu2_2(C2_2O4_4)3_3. The specific heat shows no anomaly associated with a magnetic transition at low temperatures down to TT\sim 180 mK in zero magnetic field. We observe a large linear-in-TT contribution to the specific heat γT\gamma T, γ=98(1)\gamma = 98(1) mK/mol K2^{2}, at low temperatures, indicative of the presence of fermionic excitations despite the Mott insulating state. The low-TT specific heat is strongly suppressed by applied magnetic fields HH, which induce an energy gap, Δ(H)\Delta (H), in the spin-excitation spectrum. We use the four-component relativistic density-functional theory (DFT) to calculate the magnetic interactions, including the Dzyaloshinskii-Moriya antisymmetric exchange, which causes an effective staggered field acting on one copper sublattice. The magnitude and field dependence of the field-induced gap, Δ(H)H2/3\Delta (H) \propto H^{2/3}, are accurately predicted by the soliton mass calculated from the sine-Gordon model of weakly coupled antiferromagnetic Heisenberg chains with all parameters determined by our DFT calculations. Thus our experiment and calculations are entirely consistent with a model of [(C2_2H5_5)3_3NH]2_2Cu2_2(C2_2O4_4)3_3 in which anisotropic magnetic exchange interactions due to Jahn-Teller distortion cause one copper sublattice to dimerize, leaving a second sublattice of weakly coupled antiferromagnetic chains. We also show that this model quantitatively accounts for the measured temperature-dependent magnetic susceptibility. Thus [(C2_2H5_5)3_3NH]2_2Cu2_2(C2_2O4_4)3_3 is a canonical example of a one-dimensional spin-1/2 Heisenberg antiferromagnet and not a resonating-valence-bond quantum spin liquid, as previously proposed.Comment: 8 pages, 6 figure

    From mechatronics to the Cloud

    Get PDF
    At its conception mechatronics was viewed purely in terms of the ability to integrate the technologies of mechanical and electrical engineering with computer science to transfer functionality, and hence complexity, from the mechanical domain to the software domain. However, as technologies, and in particular computing technologies, have evolved so the nature of mechatronics has changed from being purely associated with essentially stand-alone systems such as robots to providing the smart objects and systems which are the building blocks for Cyber-Physical Systems, and hence for Internet of Things and Cloud-based systems. With the possible advent of a 4th Industrial Revolution structured around these systems level concepts, mechatronics must again adapt its world view, if not its underlying technologies, to meet this new challenge

    IgE sensitisation in relation to flow-independent nitric oxide exchange parameters

    Get PDF
    BACKGROUND: A positive association between IgE sensitisation and exhaled NO levels has been found in several studies, but there are no reports on the compartment of the lung that is responsible for the increase in exhaled NO levels seen in IgE-sensitised subjects. METHODS: The present study comprised 288 adult subjects from the European Community Respiratory Health Survey II who were investigated in terms of lung function, IgE sensitisation (sum of specific IgE), smoking history and presence of rhinitis and asthma. Mean airway tissue concentration of NO (Caw(NO)), airway transfer factor for NO (Daw(NO)), mean alveolar concentration of NO (Calv(NO)) and fractional exhaled concentration of NO at a flow rate of 50 mL s(-1 )(FE(NO 0.05)) were determined using the extended NO analysis. RESULTS: IgE-sensitised subjects had higher levels (geometric mean) of FE(NO 0.05 )(24.9 vs. 17.3 ppb) (p < 0.001), Daw(NO )(10.5 vs. 8 mL s(-1)) (p = 0.02) and Caw(NO )(124 vs. 107 ppb) (p < 0.001) and positive correlations were found between the sum of specific IgE and FE(NO 0.05), Caw(NO )and Daw(NO )levels (p < 0.001 for all correlations). Sensitisation to cat allergen was the major determinant of exhaled NO when adjusting for type of sensitisation. Rhinitis and asthma were not associated with the increase in exhaled NO variables after adjusting for the degree of IgE sensitisation. CONCLUSION: The presence of IgE sensitisation and the degree of allergic sensitisation were related to the increase in airway NO transfer factor and the increase in NO concentration in the airway wall. Sensitisation to cat allergen was related to the highest increases in exhaled NO parameters. Our data suggest that exhaled NO is more a specific marker of allergic inflammation than a marker of asthma or rhinitis

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    Malignant inflammation in cutaneous T-cell lymphoma: a hostile takeover

    Get PDF
    Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)
    corecore