425 research outputs found

    Phenomenology on the QCD dipole picture revisited

    Full text link
    We perform an adjust to the most recent structure function data, considering the QCD dipole picture applied to ep scattering. The structure function F2 at small x and intermediate Q2 can be described by the model containing an economical number of free-parameters, which encodes the hard Pomeron physics. The longitudinal structure function and the gluon distribution are predicted without further adjustments. The data description is effective, whereas a resummed next-to-leading level analysis is deserved.Comment: 18 pages, 6 figures. Version to be published in Eur. Phys. J.

    Time dependent neutrino billiards

    Full text link
    Quantum dynamica of a massless Dirac particle in time-dependent 1D box and circular billiard with time-dependent radius is studied. An exact analytical wave functions and eigenvalues are obtained for the case of linear time-dependence of the boundary position

    The Schrodinger particle in an oscillating spherical cavity

    Full text link
    We study a Schrodinger particle in an infinite spherical well with an oscillating wall. Parametric resonances emerge when the oscillation frequency is equal to the energy difference between two eigenstates of the static cavity. Whereas an analytic calculation based on a two-level system approximation reproduces the numerical results at low driving amplitudes, epsilon, we observe a drastic change of behaviour when epsilon > 0.1, when new resonance states appear bearing no apparent relation to the eigenstates of the static system.Comment: 9 pages, 6 figures, corrected typo

    Prompt neutrino fluxes from atmospheric charm

    Full text link
    We calculate the prompt neutrino flux from atmospheric charm production by cosmic rays, using the dipole picture in a perturbative QCD framework, which incorporates the parton saturation effects present at high energies. We compare our results with the next-to-leading order perturbative QCD result and find that saturation effects are large for neutrino energies above 10^6 GeV, leading to a substantial suppression of the prompt neutrino flux. We comment on the range of prompt neutrino fluxes due to theoretical uncertainties.Comment: 13 pages with 11 figures; expanded discussion, added references, version to be published in Phys. Rev.

    On the linearization of the generalized Ermakov systems

    Full text link
    A linearization procedure is proposed for Ermakov systems with frequency depending on dynamic variables. The procedure applies to a wide class of generalized Ermakov systems which are linearizable in a manner similar to that applicable to usual Ermakov systems. The Kepler--Ermakov systems belong into this category but others, more generic, systems are also included

    Geometric Scaling in Inclusive Charm Production

    Get PDF
    We show that the cross section for inclusive charm production exhibits geometric scaling in a large range of photon virtualities. In the HERA kinematic domain the saturation momentum Qsat2(x)Q_{sat}^2(x) stays below the hard scale μc2=4mc2\mu_c^2=4m_c^2, implying charm production probing mostly the color transparency regime and unitarization effects being almost negligible. We derive our results considering two saturation models which are able to describe the DESY ep collider HERA data for the proton structure function at small values of the Bjorken variable xx. A striking feature is the scaling on τ=Q22/Qsat2(x)\tau=Q_2^2/Q_{sat}^2(x) above saturation limit, corroborating recent theoretical studies.Comment: 4 pages, 2 figures. Version to be published in Physical Review Letter

    Geometric Scaling in a Symmetric Saturation Model

    Full text link
    We illustrate geometric scaling for the photon-proton cross section with a very simple saturation model. We describe the proton structure function F2 at small x in a wide kinematical range with an elementary functional form and a small number of free parameters. We speculate that the symmetry between low and high Q2 recently discovered in the data could be related to a well-known symmetry of the two-gluon- exchange dipole-dipole cross section.Comment: 15 pages, 4 figure

    Lie symmetries for two-dimensional charged particle motion

    Full text link
    We find the Lie point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries comprise a quasi-invariance transformation, a time-dependent rotation, a time-dependent spatial translation and a dilation. The associated electromagnetic fields satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding four classes of electromagnetic fields compatible with Lie point symmetries

    Quantum metastability in a class of moving potentials

    Get PDF
    In this paper we consider quantum metastability in a class of moving potentials introduced by Berry and Klein. Potential in this class has its height and width scaled in a specific way so that it can be transformed into a stationary one. In deriving the non-decay probability of the system, we argue that the appropriate technique to use is the less known method of scattering states. This method is illustrated through two examples, namely, a moving delta-potential and a moving barrier potential. For expanding potentials, one finds that a small but finite non-decay probability persists at large times. Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure
    corecore