178 research outputs found
Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest
Soil carbon dioxide efflux (soil respiration, SR) was measured with eight autochambers at two locations along a wetland to upland slope at Harvard Forest over a 4 year period, 2003–2007. SR was consistently higher in the upland plots than at the wetland margin during the late summer/early fall. Seasonal and diel hystereses with respect to soil temperatures were of sufficient magnitude to prevent quantification of the influence of soil moisture, although apparent short‐term responses of SR to precipitation occurred. Calculations of annual cumulative SR illustrated a decreasing trend in SR over the 5 year period, which were correlated with decreasing springtime mean soil temperatures. Spring soil temperatures decreased despite rising air temperatures over the same period, possibly as an effect of earlier leaf expansion and shading. The synchronous decrease in spring soil temperatures and SR during regional warming of air temperatures may represent a negative feedback on a warming climate by reducing CO2 production from soils. SR reached a maximum later in the year than total ecosystem respiration (ER) measured at a nearby eddy covariance flux tower, and the seasonality of their temperature response patterns were roughly opposite. SR, particularly in the upland, exceeded ER in the late summer/early fall in each year, suggesting that areas of lower efflux such as the wetland may be significant in the flux tower footprint or that long‐term bias in either estimate may create a mismatch. Annual estimates of ER decreased over the same period and were highly correlated with SR
Heterogeneous Sensory Innervation and Extensive Intrabulbar Connections of Olfactory Necklace Glomeruli
The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB) targets of an olfactory sensory neuron (OSN) subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR), we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem
Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart.
Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze transcriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contributes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein homeostasis, suggesting that genetic variation can alter the molecular aging process
Temporal Transcriptional Profiling of Somatic and Germ Cells Reveals Biased Lineage Priming of Sexual Fate in the Fetal Mouse Gonad
The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates
Recommended from our members
Simultaneous Measurements of Atmospheric HONO and NO2 via Absorption Spectroscopy using Tunable Mid-Infrared Continuous-wave Quantum Cascade Lasers
Nitrous acid (HONO) is important as a significant source of hydroxyl radical (OH) in the troposphere and as a potent indoor air pollutant. It is thought to be generated in both environments via heterogeneous reactions involving nitrogen dioxide . In order to enable fast-response HONO detection suitable for eddy-covariance flux measurements and to provide a direct method that avoids interferences associated with derivatization, we have developed a 2-channel tunable infrared laser differential absorption spectrometer (TILDAS) capable of simultaneous high-frequency measurements of HONO and NO2. Beams from two mid-infrared continuous-wave mode quantum cascade lasers (cw-QCLs) traverse separate 210 m paths through a multi-pass astigmatic sampling cell at reduced pressure for the direct detection of HONO and . The resulting one-second detection limits (S/N=3) are 300 and 30 ppt (pmol/mol) for HONO and , respectively. Our HONO quantification is based on revised line-strengths and peak positions for cis-HONO in the 6-micron spectral region that were derived from laboratory measurements. An essential component of ambient HONO measurements is the inlet system and we demonstrate that heated surfaces and reduced pressure minimize sampling artifacts.Earth and Planetary SciencesEngineering and Applied Science
Recommended from our members
Seasonal Controls on the Exchange of Carbon and Water in an Amazonian Rain Forest
The long-term resilience of Amazonian forests to climate changes and the fate of their large stores of organic carbon depend on the ecosystem response to climate and weather. This study presents 4 years of eddy covariance data for CO2 and water fluxes in an evergreen, old-growth tropical rain forest examining the forest's response to seasonal variations and to short-term weather anomalies. Photosynthetic efficiency declined late in the wet season, before appreciable leaf litter fall, and increased after new leaf production midway through the dry season. Rates of evapotranspiration were inelastic and did not depend on dry season precipitation. However, ecosystem respiration was inhibited by moisture limitations on heterotrophic respiration during the dry season. The annual carbon balance for this ecosystem was very close to neutral, with mean net loss of 890 ± 220 kg C ha−1 yr−1, and a range of −221 ± 453 (C uptake) to +2677 ± 488 (C loss) kg C ha−1 yr−1 over 4 years. The trend from large net carbon release in 2002 towards net carbon uptake in 2005 implies recovery from prior disturbance. The annual carbon balance was sensitive to weather anomalies, particularly the timing of the dry-to-wet season transition, reflecting modulation of light inputs and respiration processes. Canopy carbon uptake rates were largely controlled by phenology and light with virtually no indication of seasonal water limitation during the 5-month dry season, indicating ample supplies of plant-available-water and ecosystem adaptation for maximum light utilization.Earth and Planetary SciencesEngineering and Applied SciencesOrganismic and Evolutionary Biolog
Genetic dissection of the pluripotent proteome through multi-omics data integration.
Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies
Regulation of protein abundance in genetically diverse mouse populations.
Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice and their founder strains. We show concordance across the proteomics datasets despite being generated from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory effects on individual proteins are conserved across the mouse populations, in particular for local genetic variation and sex differences. In comparison, proteins that form complexes are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and map fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the regulation of the proteome
Multi-omics analysis identifies drivers of protein phosphorylation.
BACKGROUND: Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated.
RESULTS: We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes.
CONCLUSIONS: Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration
Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity
Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmental syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we discovered that homozygous mutant mice showed a reduction in brain size, exploratory activity and social memory, as well as a marked increase in body weight. A role for Trappc9 in energy balance was further supported by increased ad libitum food intake in a child with TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70% reduced expression) had pathology similar to homozygous mutants, whereas mice lacking the paternal allele (30% reduction) were phenotypically normal. Taken together, we conclude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 mutations in humans and identify a role for Trappc9 and its imprinting in controlling brain development and metabolism
- …