270 research outputs found

    Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome

    Get PDF
    Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities

    array CGH screening of 134 unrelated families

    Get PDF
    Background A growing number of non-coding regulatory mutations are being identified in congenital disease. Very recently also some exons of protein coding genes have been identified to act as tissue specific enhancer elements and were therefore termed exonic enhancers or “eExons”. Methods We screened a cohort of 134 unrelated families with split-hand/split-foot malformation (SHFM) with high resolution array CGH for CNVs with regulatory potential. Results In three families with an autosomal dominant non-syndromic SHFM phenotype we detected microdeletions encompassing the exonic enhancer (eExons) 15 and 17 of DYNC1I1. In a fourth family, who had hearing loss in addition to SHFM, we found a larger deletion of 510 kb including the eExons of DYNC1I1 and, in addition, the human brain enhancer hs1642. Exons 15 and 17 of DYNC1I1 are known to act as tissue specific limb enhancers of DLX5/6, two genes that have been shown to be associated with SHFM in mice. In our cohort of 134 unrelated families with SHFM, deletions of the eExons of DYNC1I1 account for approximately 3% of the cases, while 17p13.3 duplications were identified in 13% of the families, 10q24 duplications in 12%, and TP63 mutations were detected in 4%. Conclusions We reduce the minimal critical region for SHFM1 to 78 kb. Hearing loss, however, appears to be associated with deletions of a more telomeric region encompassing the brain enhancer element hs1642. Thus, SHFM1 as well as hearing loss at the same locus are caused by deletion of regulatory elements. Deletions of the exons with regulatory potential of DYNC1I1 are an example of the emerging role of exonic enhancer elements and their implications in congenital malformation syndromes

    Structure and deformation of the Kermadec forearc in response to subduction of the Pacific oceanic plate

    Get PDF
    The Tonga-Kermadec forearc is deforming in response to on-going subduction of the Pacific Plate beneath the Indo-Australian Plate. Previous research has focussed on the structural development of the forearc where large bathymetric features such as the Hikurangi Plateau and Louisville Ridge seamount chain are being subducted. Consequently, knowledge of the ‘background’ forearc in regions of normal plate convergence is limited. We report on an ∼250-km-long multichannel seismic reflection profile that was shot perpendicular to the Tonga-Kermadec trench at ∼28°S to determine the lateral and temporal variations in the structure, stratigraphy and deformation of the Kermadec forearc resulting solely from Pacific Plate subduction. Interpretation of the seismic profile, in conjunction with regional swath bathymetry data, shows that the Pacific Plate exhibits horst and graben structures that accommodate bending-induced extensional stresses, generated as the trenchward dip of the crust increases. Trench infill is also much thicker than expected at 1 km which, we propose, results from increased sediment flux into and along the trench. Pervasive normal faulting of the mid-trench slope most likely accommodates the majority of the observed forearc extension in response to basal subduction erosion, and a structural high is located between the mid- and upper-trench slopes. We interpret this high as representing a dense and most likely structurally robust region of crust lying beneath this region. Sediment of the upper-trench slope documents depositional hiatuses and on-going uplift of the arc. Strong along-arc currents appear to erode the Kermadec volcanic arc and distribute this sediment to the surrounding basins, while currents over the forearc redistribute deposits as sediment waves. Minor uplift of the transitional Kermadec forearc, observed just to the north of the profile, appears to relate to an underlying structural trend as well as subduction of the Louisville Ridge seamount chain 250 km to the north. Relative uplift of the Kermadec arc is observed from changes in the tilt of upper-trench slope deposits and extensional faulting of the basement immediately surrounding the Louisville Ridge

    Mutations Involving the Transcription Factor CBFA1 Cause Cleidocranial Dysplasia

    Get PDF
    AbstractCleidocranial dysplasia (CCD) is an autosomal-dominant condition characterized by hypoplasia/aplasia of clavicles, patent fontanelles, supernumerary teeth, short stature, and other changes in skeletal patterning and growth. In some families, the phenotype segregates with deletions resulting in heterozygous loss of CBFA1, a member of the runt family of transcription factors. In other families, insertion, deletion, and missense mutations lead to translational stop codons in the DNA binding domain or in the C-terminal transactivating region. In-frame expansion of a polyalanine stretch segregates in an affected family with brachydactyly and minor clinical findings of CCD. We conclude that CBFA1 mutations cause CCD and that heterozygous loss of function is sufficient to produce the disorder

    Am J Hum Genet

    No full text
    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development

    Gene identification and analysis of transcripts differentially regulated in fracture healing by EST sequencing in the domestic sheep

    Get PDF
    BACKGROUND: The sheep is an important model animal for testing novel fracture treatments and other medical applications. Despite these medical uses and the well known economic and cultural importance of the sheep, relatively little research has been performed into sheep genetics, and DNA sequences are available for only a small number of sheep genes. RESULTS: In this work we have sequenced over 47 thousand expressed sequence tags (ESTs) from libraries developed from healing bone in a sheep model of fracture healing. These ESTs were clustered with the previously available 10 thousand sheep ESTs to a total of 19087 contigs with an average length of 603 nucleotides. We used the newly identified sequences to develop RT-PCR assays for 78 sheep genes and measured differential expression during the course of fracture healing between days 7 and 42 postfracture. All genes showed significant shifts at one or more time points. 23 of the genes were differentially expressed between postfracture days 7 and 10, which could reflect an important role for these genes for the initiation of osteogenesis. CONCLUSION: The sequences we have identified in this work are a valuable resource for future studies on musculoskeletal healing and regeneration using sheep and represent an important head-start for genomic sequencing projects for Ovis aries, with partial or complete sequences being made available for over 5,800 previously unsequenced sheep genes

    Am. J. Hum. Genet.

    No full text
    Thrombocytopenia–absent radius (TAR) syndrome is characterized by hypomegakaryocytic thrombocytopenia and bilateral radial aplasia in the presence of both thumbs. Other frequent associations are congenital heart disease and a high incidence of cow’s milk intolerance. Evidence for autosomal recessive inheritance comes from families with several affected individuals born to unaffected parents, but several other observations argue for a more complex pattern of inheritance. In this study, we describe a common interstitial microdeletion of 200 kb on chromosome 1q21.1 in all 30 investigated patients with TAR syndrome, detected by microarray-based comparative genomic hybridization. Analysis of the parents revealed that this deletion occurred de novo in 25% of affected individuals. Intriguingly, inheritance of the deletion along the maternal line as well as the paternal line was observed. The absence of this deletion in a cohort of control individuals argues for a specific role played by the microdeletion in the pathogenesis of TAR syndrome. We hypothesize that TAR syndrome is associated with a deletion on chromosome 1q21.1 but that the phenotype develops only in the presence of an additional as-yet-unknown modifier (mTAR)

    Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve Split-Hand/Foot Malformation type 3

    Get PDF
    Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigated the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice resulted in restructuring of the chromatin architecture. This led to an ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern. Artificial repositioning of the AER-specific enhancers of Fgf8 was sufficient to induce misexpression of Lbx1 and Btrc. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression and dosage in the developing limb. Our results reveal new insights into the molecular mechanism underlying SHFM3 and provide novel conceptual framework for how genomic rearrangements can cause gene misexpression and disease

    Am J Hum Genet

    No full text
    Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the γ-subunit gene (CHRNG) of the AChR. Our functional studies show that γ-subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney–cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two α, one β, and one δ subunit are always present. By switching γ to ϵ subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the γ subunit were thought to be lethal, as they are in γ-knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because γ expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway
    corecore