157 research outputs found

    New ecosystems in the deep subsurface follow the flow of water driven by geological activity

    Get PDF
    Eukarya have been discovered in the deep subsurface at several locations in South Africa, but how organisms reach the subsurface remains unknown. We studied river-subsurface fissure water systems and identified Eukarya from a river that are genetically identical for 18S rDNA. To further confirm that these are identical species one metazoan species recovered from the overlying river interbred successfully with specimen recovered from an underlying mine at โˆ’1.4โ€‰km. In situ seismic simulation experiments were carried out and show seismic activity to be a major force increasing the hydraulic conductivity in faults allowing organisms to create ecosystems in the deep subsurface. As seismic activity is a non-selective force we recovered specimen of algae and Insecta that defy any obvious other explanation at a depth of โˆ’3.4โ€‰km. Our results show there is a steady flow of surface organisms to the deep subsurface where some survive and adapt and others perish. As seismic activity is also present on other planets and moons in our solar system the mechanism elucidated here may be relevant for future search and selection of landing sites in planetary exploration.publishedVersio

    Molecular understanding of the serum antibody repertoires after seasonal influenza vaccination among different age cohorts

    Get PDF
    Numerous influenza vaccination studies based on bulk serology have indicated that the antibody responses to the vaccine markedly decrease in the elderly. However, whether such decline results from the changes in the overall quantity or the quality of the circulating antibodies in serum remains unknown. Utilizing novel antibody repertoire profiling technologies, combining tandem mass spectrometry (LC-MS/MS) and high-throughput sequencing, we investigated the influenza-specific serological repertoires of 10 donors ranging from 26 to 70 years old vaccinated with Fluzoneยฎ 2013-2014 and/or 2014-2015. In particular, we determined the serum antibodies that are specific to the H1 or H3 component of the vaccine or cross-reactive between the two (H1+H3) and examined their relative quantitative distributions. Our data indicate that the proportion of H1+H3 antibodies significantly increases in the elderly and that the somatic hypermutation rates of the influenza-specific antibodies are higher in the elderly. These results suggest that the repeated exposure to the different virus subtypes could have led to the prolonged selection of H1+H3 antibodies targeting highly conserved epitopes. To evaluate the potency of the antibodies circulating in different age groups, we recombinantly expressed a number of representative monoclonal antibodies isolated from the donors in different age groups for further characterizations. Overall, our analysis suggests that the influenza-specific repertoire in the elderly may converge toward shared epitopes but the quality of the antibodies can be superior in terms of cross-reactivity. However, because the antibody repertoire โ€œshrinksโ€ as we age while targeting more conserved epitopes across different influenza subtypes, it is possible that the elderly is particularly susceptible to significantly altered strains. Collectively, profiling vaccine induced serological repertoires among different age cohorts can provide unprecedented insights regarding humoral immunity associated with age and a potential explanation for the vulnerability of the elderly

    New ecosystems in the deep subsurface follow the flow of water driven by geological activity

    Get PDF
    Eukarya have been discovered in the deep subsurface at several locations in South Africa, but how organisms reach the subsurface remains unknown. We studied river-subsurface fissure water systems and identified Eukarya from a river that are genetically identical for 18S rDNA. To further confirm that these are identical species one metazoan species recovered from the overlying river interbred successfully with specimen recovered from an underlying mine at -1.4 km. In situ seismic simulation experiments were carried out and show seismic activity to be a major force increasing the hydraulic conductivity in faults allowing organisms to create ecosystems in the deep subsurface. As seismic activity is a non-selective force we recovered specimen of algae and Insecta that defy any obvious other explanation at a depth of -3.4 km. Our results show there is a steady flow of surface organisms to the deep subsurface where some survive and adapt and others perish. As seismic activity is also present on other planets and moons in our solar system the mechanism elucidated here may be relevant for future search and selection of landing sites in planetary exploration

    Volunteerism, social context and health impacts: a qualitative study of Glasgow Commonwealth Games event volunteers

    Get PDF
    Volunteer engagement is crucial to the effective delivery of mega-sporting events. While evidence points to reported motivations and wellbeing benefits for individual participants during and post event, there is less evidence on how this type of civic participation relates to the social context in which it occurs and the wider social determinants of health. This qualitative study sought to understand impacts on wellbeing and the determinants of health resulting from the experience of volunteering at the Glasgow 2014 Commonwealth Games. Focus groups and interviews were conducted one-year post-Games to gather the perspectives of 46 volunteers and 7 unsuccessful applicants on their experiences. Participants provided insight into the volunteer journey, contributions and associated outcomes. Wider social impacts were also reported including a renewed sense of pride in the city. The qualitative analysis suggested an important non-linear relationship between volunteer contributions, impacts and rewards, and the outcome of enhanced social connections. The emergent โ€˜people and placeโ€™ framework identifies some critical factors around city life and volunteer assets that planners could consider in developing and evaluating sustainable volunteering and its wider impacts beyond a mega-event

    The Potential of Medical Abortion to Reduce Maternal Mortality in Africa: What Benefits for Tanzania and Ethiopia?

    Get PDF
    BACKGROUND: Unsafe abortion is estimated to account for 13% of maternal mortality globally. Medical abortion is a safe alternative. METHODS: By estimating mortality risks for unsafe and medical abortion and childbirth for Tanzania and Ethiopia, we modelled changes in maternal mortality that are achievable if unsafe abortion were replaced by medical abortion. We selected Ethiopia and Tanzania because of their high maternal mortality ratios (MMRatios) and contrasting situations regarding health care provision and abortion legislation. We focused on misoprostol-only regimens due to the drug's low cost and accessibility. We included the impact of medical abortion on women who would otherwise choose unsafe abortion and on women with unwanted/mistimed pregnancies who would otherwise carry to term. RESULTS: Thousands of lives could be saved each year in each country by implementing medical abortion using misoprostol (2122 in Tanzania and 2551 in Ethiopia assuming coverage equals family planning services levels: 56% for Tanzania, 31% for Ethiopia). Changes in MMRatios would be less pronounced because the intervention would also affect national birth rates. CONCLUSIONS: This is the first analysis of impact of medical abortion provision which takes into account additional potential users other than those currently using unsafe abortion. Thousands of women's lives could be saved, but this may not be reflected in as substantial changes in MMRatios because of medical abortion's demographic impact. Therefore policy makers must be aware of the inability of some traditional measures of maternal mortality to detect the real benefits offered by such an intervention

    Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines

    Get PDF
    AimsModulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy.MethodsAn industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses.ResultsSeveral specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50โ€‰ฮผM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines.ConclusionsOur study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma
    • โ€ฆ
    corecore