273 research outputs found
Characterization of a novel population of low-density granulocytes associated with disease severity in HIV-1 infection
The mechanisms resulting in progressive immune dysfunction during the chronic phase of HIV infection are not fully understood. We have previously shown that arginase, an enzyme with potent immunosuppressive properties, is increased in HIV seropositive (HIV+) patients with low CD4(+) T cell counts. Here we show that the cells expressing arginase in peripheral blood mononuclear cells of HIV+ patients are low-density granulocytes (LDGs) and that whereas these cells have a similar morphology to normal-density granulocyte, they are phenotypically different. Importantly, our results reveal that increased frequencies of LDGs correlate with disease severity in HIV+ patients
Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions
Immunologically, active visceral leishmaniasis (VL) is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood. In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites. Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL
Phenotypic Alteration of Neutrophils in the Blood of HIV Seropositive Patients
We have recently identified a novel population of activated low-density granulocytes (LDGs) in peripheral blood mononuclear cells of HIV seropositive patients. LDGs have a similar morphology to normal density granulocytes (NDGs), but are phenotypically different. Here we measured the expression levels of different phenotypic markers of granulocytes in the blood of HIV seropositive patients at different stages of HIV infection to determine whether the phenotype of NDGs and LDGs are affected by disease severity. Our results reveal that the phenotype of NDGs, but not that of LDGs, varies according to the severity of the disease
Local Suppression of T Cell Responses by Arginase-Induced L-Arginine Depletion in Nonhealing Leishmaniasis
The balance between T helper (Th) 1 and Th2 cell responses is a major determinant of the outcome of experimental leishmaniasis, but polarized Th1 or Th2 responses are not sufficient to account for healing or nonhealing. Here we show that high arginase activity, a hallmark of nonhealing disease, is primarily expressed locally at the site of pathology. The high arginase activity causes local depletion of L-arginine, which impairs the capacity of T cells in the lesion to proliferate and to produce interferon-γ, while T cells in the local draining lymph nodes respond normally. Healing, induced by chemotherapy, resulted in control of arginase activity and reversal of local immunosuppression. Moreover, competitive inhibition of arginase as well as supplementation with L-arginine restored T cell effector functions and reduced pathology and parasite growth at the site of lesions. These results demonstrate that in nonhealing leishmaniasis, arginase-induced L-arginine depletion results in impaired T cell responses. Our results identify a novel mechanism in leishmaniasis that contributes to the failure to heal persistent lesions and suggest new approaches to therapy
Local Increase of Arginase Activity in Lesions of Patients with Cutaneous Leishmaniasis in Ethiopia
The leishmaniases are a complex of diseases caused by Leishmania parasites. Currently, the diseases affect an estimated 12 million people in 88 countries, and approximately 350 million more people are at risk. The leishmaniases belong to the most neglected tropical diseases, affecting the poorest populations, for whom access to diagnosis and effective treatment are often not available. Leishmania parasites infect cells of the immune system called macrophages, which have the capacity to eliminate the intracellular parasites when they receive the appropriate signals from other cells of the immune system. In nonhealing persistent leishmaniasis, lymphocytes are unable to transmit the signals to macrophages required to kill the intracellular parasites. The local upregulation of the enzyme arginase has been shown to impair lymphocyte effector functions at the site of pathology. In this study, we tested the activity of this enzyme in skin lesions of patients presenting with localized cutaneous leishmaniasis. Our results show that arginase is highly upregulated in these lesions. This increase in arginase activity coincides with lower expression of a signalling molecule in lymphocytes, which is essential for efficient activation of these cells. These results suggest that increased arginase expression in the localized cutaneous lesions might contribute to persistent disease in patients presenting with cutaneous leishmaniasis
Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis
Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions
Age-Related Alteration of Arginase Activity Impacts on Severity of Leishmaniasis
It is well documented that ageing alters many aspects of immune responses; however, a causal relation between impaired immune functions in ageing individuals and the response to infection has not been established. Experimental leishmaniasis is an excellent model to analyse protective and pathological immune responses. Leishmania parasites are obligate intracellular pathogens and invade mainly macrophages, which have dual function: they can kill the parasites or promote their growth. We have recently shown that arginase, an enzyme induced in infected macrophages, is a key factor for parasite survival. Here, we show that ageing reduces the expression levels of arginase in macrophages, resulting in more efficient control of parasite growth. Our results suggest that age-related differences in the metabolism of arginase in macrophages might contribute to the higher susceptibility of children to leishmaniasis
IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease
To through light on the mechanisms underlying the stimulation and persistence of glial cell activation in Parkinsonism, we investigate the function of IFN-γ and TNF-α in experimental models of Parkinson's disease and analyze their relation with local glial cell activation. It was found that IFN-γ and TNF-α remained higher over the years in the serum and CNS of chronic Parkinsonian macaques than in untreated animals, accompanied by sustained glial activation (microglia and astroglia) in the substantia nigra pars compacta. Importantly, Parkinsonian monkeys showed persistent and increasing levels of IFN-γR signaling in both microglial and astroglial cells. In addition, experiments performed in IFN-γ and TNF-α KO mice treated with MPTP revealed that, even before dopaminergic cell death can be observed, the presence of IFN-γ and TNF-α is crucial for microglial and astroglial activation, and, together, they have an important synergistic role. Both cytokines were necessary for the full level of activation to be attained in both microglial and astroglial cells. These results demonstrate that IFN-γ signaling, together with the contribution of TNF-α, have a critical and cell-specific role in stimulating and maintaining glial cell activation in Parkinsonism
The Subcellular Distribution of Acyltransferases which Catalyze the Synthesis of Phosphoglycerides
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65213/1/j.1432-1033.1969.tb00602.x.pd
- …