147 research outputs found

    Effect of Greenhouse Temperature on Tomato Yield and Ripening

    Get PDF
    High fuel costs have encouraged producers of greenhouse tomato (Solanum lycopersicum L.) in the mid-Atlantic region to reduce air temperatures during the day. However, effects on fruit ripening and yield are not known, especially under the low light conditions found in off-season production. This 2-yr study compared fruit ripening and yield of tomato under two temperature regimes during the fall season. Two sets of 18 tomato plants, three rows of six, were grown in soilless culture under either a warm or cool temperature regime. Temperatures were similar during night hours but allowed to rise to at least 21- 24 degrees C in the cool greenhouse section and 23-26 degrees C in the warm section, depending on daily solar heating. Mean 24 hour temperature difference between zones was less than 2 degrees C. Ripe tomato fruit were harvested and weighed 3 times per week for 8 weeks and the remaining un-ripened green tomatoes were weighed at the termination of the experiment to obtain total fruit biomass. The warm zone produced significantly greater weight of ripe tomatoes (23%) than the cool zone. However, total fruit weight (ripe and green), was not significantly different. Thus a relatively small increase in temperature (2 degrees C) during the mid-day was associated with a significant increase in fruit ripening but not in total fruit weight. This study showed that greenhouse temperature could be used to better manage fruit production to match weekly market demand without affecting total fruit weight and that consistently maintaining a cool greenhouse would delay tomato ripening and likely increase the potential for plant stress due to high fruit loads remaining on the vines

    Use of fiber optic technology to measure the effects of anesthesia on luciferase reaction kinetics

    Get PDF
    In vivo bioluminescent imaging (BLI) is a sensitive and reliable technique for studying gene expression, although experiments must be controlled tightly to obtain reproducible and quantitative measurements. The luciferase reaction depends on the availability of the reaction substrate, oxygen, and ATP, the distribution of which can vary markedly in different tissues. Here we used in vivo fiber optic technology, combined with stereotaxis-assisted surgery, to assess luciferase reaction kinetics in response to 2 anesthetic regimens, isoflurane and ketamine–xylazine. Transgenic rats that expressed luciferase under the control of the human prolactin promoter were used as a model organism. Anesthesia had a marked effect on luciferase reaction kinetics. The rise time to peak emission differed by 20 min between isoflurane and ketamine–xylazine. Optical imaging using a charge-coupled–device camera confirmed this delay. These results demonstrate that different anesthetics can have substantial effects on luciferase reaction kinetics and suggest that the timing of image acquisition after substrate injection should be optimized in regard to experimental conditions and the tissues of interest

    Principles of small-scale aquaponics

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Asymmetric BMP4 signalling improves the realism of kidney organoids

    Get PDF
    Abstract We present a strategy for increasing the anatomical realism of organoids by applying asymmetric cues to mimic spatial information that is present in natural embryonic development, and demonstrate it using mouse kidney organoids. Existing methods for making kidney organoids in mice yield developing nephrons arranged around a symmetrical collecting duct tree that has no ureter. We use transplant experiments to demonstrate plasticity in the fate choice between collecting duct and ureter, and show that an environment rich in BMP4 promotes differentiation of early collecting ducts into uroplakin-positive, unbranched, ureter-like epithelial tubules. Further, we show that application of BMP4-releasing beads in one place in an organoid can break the symmetry of the system, causing a nearby collecting duct to develop into a uroplakin-positive, broad, unbranched, ureter-like ‘trunk’ from one end of which true collecting duct branches radiate and induce nephron development in an arrangement similar to natural kidneys. The idea of using local symmetry-breaking cues to improve the realism of organoids may have applications to organoid systems other than the kidney

    Functional ultrasound imaging for assessment of extracellular matrix scaffolds used for liver organoid formation

    Get PDF
    A method of 3D functional ultrasound imaging has been developed to enable non-destructive assessment of extracellular matrix scaffolds that have been prepared by decellularization protocols and are intended for recellularization to create organoids. A major challenge in organ decellularization is retaining patent micro-vascular structures crucial for nutrient access and functionality of organoids. The imaging method described here provides statistical distributions of flow rates throughout the tissue volumes, 3D vessel network architecture visualization, characterization of microvessel volumes and sizes, and delineation of matrix from vascular circuits. The imaging protocol was tested on matrix scaffolds that are tissue-specific, but not species-specific, matrix extracts, prepared by a process that preserved >98% of the collagens, collagen-associated matrix components, and matrix-bound growth factors and cytokines. Image-derived data are discussed with respect to assessment of scaffolds followed by proof-of-concept studies in organoid establishment using Hep3B, human hepatoblast-like cells. Histology showed that the cells attached to scaffolds with patent vasculature within minutes, achieved engraftment at near 100%, expressed liver-specific functions within 24h, and yielded evidence of proliferation and increasing differentiation of cells throughout the two weeks of culture studies. This imaging method should prove valuable in analyses of such matrix scaffolds

    Activation of Thiazide-Sensitive Co-Transport by Angiotensin II in the cyp1a1-Ren2 Hypertensive Rat

    Get PDF
    Transgenic rats with inducible expression of the mouse Ren2 gene were used to elucidate mechanisms leading to the development of hypertension and renal injury. Ren2 transgene activation was induced by administration of a naturally occurring aryl hydrocarbon, indole-3-carbinol (100 mg/kg/day by gastric gavage). Blood pressure and renal parameters were recorded in both conscious and anesthetized (butabarbital sodium; 120 mg/kg IP) rats at selected time-points during the development of hypertension. Hypertension was evident by the second day of treatment, being preceded by reduced renal sodium excretion due to activation of the thiazide-sensitive sodium-chloride co-transporter. Renal injury was evident after the first day of transgene induction, being initially limited to the pre-glomerular vasculature. Mircoalbuminuria and tubuloinsterstitial injury developed once hypertension was established. Chronic treatment with either hydrochlorothiazide or an AT1 receptor antagonist normalized sodium reabsorption, significantly blunted hypertension and prevented renal injury. Urinary aldosterone excretion was increased ∼20 fold, but chronic mineralocorticoid receptor antagonism with spironolactone neither restored natriuretic capacity nor prevented hypertension. Spironolactone nevertheless ameliorated vascular damage and prevented albuminuria. This study finds activation of sodium-chloride co-transport to be a key mechanism in angiotensin II-dependent hypertension. Furthermore, renal vascular injury in this setting reflects both barotrauma and pressure-independent pathways associated with direct detrimental effects of angiotensin II and aldosterone

    Pericentric chromatin loops function as a nonlinear spring in mitotic force balance

    Get PDF
    During mitosis, cohesin- and condensin-based pericentric chromatin loops function as a spring network to balance spindle microtubule force.The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes
    • …
    corecore