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Abstract

A method of 3D functional ultrasound imaging has been developed to enable non-destructive 

assessment of extracellular matrix scaffolds that have been prepared by decellularization protocols 

and are intended for recellularization to create organoids. A major challenge in organ 

decellularization is retaining patent micro-vascular structures crucial for nutrient access and 

functionality of organoids. The imaging method described here provides statistical distributions of 

flow rates throughout the tissue volumes, 3D vessel network architecture visualization, 

characterization of microvessel volumes and sizes, and delineation of matrix from vascular 

circuits. The imaging protocol was tested on matrix scaffolds that are tissue-specific, but not 

species-specific, matrix extracts, prepared by a process that preserved >98% of the collagens, 

collagen-associated matrix components, and matrix-bound growth factors and cytokines. Image-

derived data are discussed with respect to assessment of scaffolds followed by proof-of-concept 

studies in organoid establishment using Hep3B, human hepatoblast-like cells. Histology showed 

that the cells attached to scaffolds with patent vasculature within minutes, achieved engraftment at 

near 100%, expressed liver-specific functions within 24h, and yielded evidence of proliferation 

and increasing differentiation of cells throughout the two weeks of culture studies. This imaging 

method should prove valuable in analyses of such matrix scaffolds.
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1. Introduction

Liver transplantation is the primary treatment for end-stage liver disease [1]. Currently, 

more than 16,000 adults and children are in need of liver transplants. Unfortunately, the 

number of livers available for transplantation are in short supply [2]. An alternative to organ 

transplantation is to support patients using an extracorporeal liver-assist device (LAD). A 

LAD is a bioreactor comprised of liver cells harvested from donor livers and incorporated 

into a network of hollow dialysis fibers that mimic blood vessels, which can connect to the 

patient and thus serve as a bioartificial liver [3, 4]. Such bioartificial liver devices provide 

temporary relief for one to two weeks or until an organ is available for transplantation. They 

cannot be used longer, since liver cells seeded into all extant forms of bioreactors attach and 

deposit extracellular matrix and other cellular components onto the hollow fibers, causing 

“fouling” or clogging of the fibers’ pores, limiting the life span of the device [5].

A more robust alternative is to develop human liver organoids that can be incorporated into 

a LAD to enable hemodialysis; this provides a more stable and fully functional bioartificial 

liver in which vascular channels are provided by the native extracellular matrix components 

lined by endothelia. “Biomatrix scaffolds”, herein referred to as matrix scaffolds, are a 

particularly rich form of extracellular matrix extracted from organs or tissue and derived 

from gentle delipidation and perfusion of high salt buffers to keep all collagens and their 

associated factors insoluble [15]. The organoids can be formed by preparing matrix scaffolds 

from decellularized livers and then recellularizing the scaffolds with human cells. These 

matrix scaffolds can be recellularized in two stages: first, the vascular channels are 

recellularized with endothelia through which medium and then blood can be perfused; and 

second, the rest of the matrix is recellularized with a combination of hepatic and 

mesenchymal stem cell populations that will mature into fully functional liver parenchymal 

cells along with their mesenchymal cell partners. Current efforts are making use of human 

hepatic cell lines for human liver organoid formation to establish optimal recellularization 

protocols. Successful protocols will then be used with freshly isolated human hepatic and 

mesenchymal stem cell populations and endothelia.

For recellularized scaffolds to yield a human liver organoid able to support patients as a 

bioartificial liver, cell functions must be comparable to those of normal human livers. Since 

cell seeding and organoid functionality are directly related to the patency and structure of 

microvascular matrix remnants in the scaffold, there is a crucial need for non-destructive 

assessment of the structural characteristics of the scaffold, particularly its vascular matrix. 

Without adequate perfusion, the process of reseeding matrix scaffolds with new cells cannot 

be accomplished, since this process relies on fluid transport through the matrix remnants of 

the vascular bed for the delivery of the cells. Also, after cells have been engrafted 

throughout the scaffolds, their continued functions depend on a long-term delivery of 
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nutrients and oxygen. For this reason, a method to image both the anatomy and flow within 

the sample in a nondestructive manner is highly desirable.

There are many methods currently employed to image tissue scaffolds, including scanning 

and transmission electron microscopy (SEM and TEM), optical microscopy [6], magnetic 

resonance (MR) imaging and microscopy [7], computed tomography (CT) [8], optical 

coherence tomography (OCT) [9], and Doppler ultrasound [10]. The selection of any one 

modality will always yield inherent tradeoffs such as cost, invasiveness to the sample, field 

of view, resolution, acquisition time, and type of information gleaned. From this list, the 

imaging modalities that can non-invasively image a 3D scaffold with a significant thickness 

are MR, CT, and ultrasound. MR and CT are widely available in both clinical and research 

contexts. These modalities have the best field of view, although they require expensive 

hardware (particularly MR imaging). MR can also require long image acquisition times. On 

the other hand, CT suffers from poor soft tissue contrast and can cause radiation damage to 

cells. Ultrasound has many benefits over MR and CT in that it is real-time, relatively 

inexpensive, non-invasive, does not use ionizing radiation, and has excellent soft-tissue 

contrast. In addition, ultrasound is able to assess multiple different qualities of a tissue 

volume (applicable to both in vivo volumes and in vitro matrix scaffolds), including tissue 

structure with standard b-mode [11], mechanical stiffness [12], microvascular perfusion 

architecture [13], and parametric perfusion rate [14]. One possible challenge hindering 

ultrasound’s utility for scaffold perfusion assessment to date has likely been the modality’s 

limited field of view, allowing for freehand visualization of different 2D slices, or small 3D 

sub-volumes, but traditionally not visualization or quantitation of a large field of view. Our 

objective in this study was to explore the application of ultrasound to perform 3D 

visualization and quantification of perfusion throughout a matrix scaffold.

In these studies, we have developed a protocol to enable detailed assessment of vascular 

structural and functional characteristics within scaffolds in a non-destructive manner. We 

had two objectives: the first was to explore the application of ultrasound to perform 3D 

visualization and quantification of perfusion throughout an extracellular matrix scaffold; the 

second was to demonstrate using a helatolast-like cell line, Hep3B, that the imaging 

assessments can identify scaffolds that will be successful for creating human liver organoids.

2. Materials and methods

2.1 Decellularization of rat livers

Wistar rats (weights 250–300 g) were obtained from Charles River Laboratories, 

Wilmington, MA, and housed in animal facilities handled by the University of North 

Carolina (UNC) Division of Laboratory Animal Management. They were fed ad libitum 

until used for experiments. All experimental work was approved by and performed in 

accordance with the UNC Institutional Animal Use and Care Committee guidelines.

The protocol for decellularizing livers to produce matrix scaffolds has been described 

previously [15]. Images of tissue in the process of decellularization are given in the online 

supplement Figure S1, and results using this protocol are compared to results using other 

decellularization protocols (Table S1). Male rats were anesthetized with Ketamine-Xylazine, 
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and their abdominal cavity opened. The portal vein was cannulated with a 20-gauge catheter 

to provide a perfusion inlet to the vasculature of the liver, and the vena cava was transected 

to provide an outlet for perfusion. The liver was removed from the abdominal cavity and 

placed in a perfusion bioreactor. The blood was removed by flushing the liver with 300 ml 

of serum-free DMEM/F12 (Gibco, Grand Island, NY). A delipidation buffer, comprised of 

36 U/L of phospholipase A2 in 1% sodium deoxycholate (Fisher, Pittsburgh, PA) was used 

to remove plasma and nuclear membranes, and was perfused through the liver for ~30 

minutes (up to an hour) or until the tissue became transparent.

This was followed by perfusion for 90 minutes with a high salt buffer (NaCL). Solubility 

constants for known collagen types in liver are such that 3.4 M NaCL is adequate to keep 

them all in an insoluble state, along with any matrix components and cytokine/growth 

factors bound to the collagens or the collagen-bound matrix components. The liver was 

rinsed for 15 minutes with serum-free DMEM/F12 to eliminate the delipidation buffer and 

then followed by perfusion with 100 ml of DNase (1 mg per 100 ml; Fisher, Pittsburgh, PA) 

and RNase (5 mg per 100 ml; Sigma Aldrich, St. Louis, MO) to remove any residual 

contaminants of nucleic acids from the scaffold. The final step was to rinse the scaffolds 

with serum-free DMEM/F12 for 1 hour to eliminate any residual salt or nucleases. Images 

are provided in Figure S1. The decellularized liver scaffolds were stored overnight at 4°C 

and perfused with serum-free DME/F12 basal media at 3 ml/min via a peristaltic pump 

(Masterflex, Cole-Parmer, Vernon Hills, IL) before the imaging study was performed. Prior 

to an imaging study, the scaffold was transferred from the perfusion bioreactor into the 

sample imaging chamber (Figure 1). When in the sample imaging chamber, perfusion was 

maintained at 4 ml/min through the matrix scaffold remnant of the portal vein via the same 

peristaltic pump.

2.2 Contrast imaging

An overview of the image data processing workflow is provided (Figure 2). Flash 

replenishment imaging was performed using an Acuson Sequoia 512 equipped with a 15L8 

transducer (Siemens Medical Solutions USA Inc, Mountain View, CA). The “CPS Capture” 

software algorithm was used to measure perfusion time. The 3D images of the liver matrix 

scaffold were acquired by scanning the transducer in the elevational direction using a linear 

stage and motion controller (UTS150PP and ESP300, Newport, Irvine, CA) interfaced 

through LabVIEW (National Instruments, Austin, TX) as described by Feingold et al [14]. 

Perfusion images were parametrically mapped to contrast arrival times between 1 and 10 

seconds. These images were stored in DICOM format with JPEG compression and analyzed 

offline in MATLAB (Mathworks, Natick, MA). Perfusion times within the regions of 

interest were assessed.

Acoustic angiography was performed on a prototype dual frequency probe [16] with 

imaging parameters previously described [13]. The imaging system was a VisualSonics 

Vevo770 (Toronto, ON, Canada), with pulses emitted at 4 MHz at 1.23 MPa, and echoes 

received on a 30 MHz transducer with 100% bandwidth after being passed through a 15 

MHz high pass filter to remove non-contrast signal. Three-dimensional images were 

acquired with the VisualSonics 1D linear motion stage with inter-frame distance of 100 µm 
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to yield nearly isotropic voxels. Images were acquired with a frame rate of 2 Hz, with 5 

frames averaged at each location. High resolution b-mode images were also acquired with 

the Vevo770 system using the same imaging parameters, except the transmit frequency 

changed to 30 MHz. After imaging, data was exported from the ultrasound system as 8 bit 

uncompressed AVIs. The microvessels were then segmented from these images using an 

algorithm originally designed for human magnetic resonance angiography images, as 

previously demonstrated by our group [13]. These segmentations yielded XYZ points with 

subvoxel spacing along vessel centerlines, with estimates of vessel radii at each location. 

These segmentations were used to assess vessel network architecture.

All three scaffold samples imaged required the registration of multiple sub-volumes for 

holistic visualization. Perfusion rate information required two sub-volumes for all samples, 

while the anatomical information and acoustic angiography data required three sub-volumes 

for sample #1, and two for samples #2 and #3. Once completed, the acoustic angiography 

data was displayed via maximum intensity projections (MIPs) (Figure 3). Anatomical b-

mode data cannot be displayed in this fashion, so XZ slices through the merged volumes 

were displayed.

2.3 Imaging the matrix scaffolds

Image acquisition for each sample (Figure 4, Panels 1 and 2) required approximately 50 

minutes total, due to the small step sizes used in each case to obtain high resolution images 

(800 µm steps for the anatomical and perfusion images, and 100 µm steps for the acoustic 

angiography). Standard grayscale ultrasound images provided reference for the scaffold 

“anatomy” but provided no functional information. Acoustic angiography provided high-

resolution images of the branching microvasculature structure, with no tissue background. 

Perfusion imaging provided spatial distributions of local flow rates (images not shown). All 

image sets were co-registered using major anatomical landmarks. Total field of view for the 

regions of interest acquired was approximately 4 × 4 × 3 cm (axial × lateral × elevation) for 

the anatomical and perfusion images, and approximately 4 × 3 × 1.4 cm for the acoustic 

angiography.

2.4 Scanning electron microscopy (SEM)

Samples of normal rat liver versus rat liver matrix scaffolds were fixed with 4% buffered 

formaldehyde and examined by SEM at high vacuum (Quanta 200 Field Emission Gun, 

FEI™, Hillsborough, OR) at the Chapel Hill Analytical and Nanofabrication Laboratory on 

the UNC campus.

2.5 Recellularization of matrix scaffolds

Matrix scaffolds with intact vasculature were seeded with human hepatoblast-like cells, 

Hep3B cells (ATCC® HB-8064™). These cells were introduced by perfusion through the 

matrix remnants of the portal vein via a peristaltic pump (Masterflex, Cole-Parmer, Vernon 

Hills, IL) (see Figure S3) and cultured in Hep3B medium (DMEM + 10% Fetal Bovine 

Serum). Approximately 130 ×106 cells were perfused into a scaffold in steps with 20 

minutes intervals. During each interval, 30 × 106 cells were perfused at 15 ml/min for 10 

minutes, followed by 10 minutes of rest (0 ml/min). This was repeated 4 times. Once all of 
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the cells were introduced into a matrix scaffold, the flow rate was lowered to 1.3 ml/min and 

the scaffolds were perfused with the culture medium. The medium was changed after 24 

hours and again every 3 days.

The reseeded matrix scaffolds were cultured in the bioreactors (Figure S3) for up to 14 days. 

After 14 days, lobes of the reseeded matrix scaffold were either frozen for histology and 

immunohistochemistry, or fixed for scanning electron microscopy (SEM) imaging (using the 

method noted above). Sections of the reseeded matrix scaffolds were assessed also by 

immunohistochemistry and immunofluorescence for cell distribution (Hematoxylin and 

Eosin), cell proliferation (Ki67) and apoptosis, as well as for albumin and urea protein 

expression. SEM images were also taken to view cell location with respect to vasculature. 

Antibody information and dilutions are provided in the supplemental materials.

3. Results

3.1 Sample imaging chamber

In order to image the delicate tissue scaffold, a chamber (Figure 1) was designed to allow a 

tissue sample to be imaged while submerged in media, since ultrasound imaging at the 

frequencies utilized requires coupling of the imaging transducer to the sample with liquid. 

The fluid bath allows for non-contact image acquisition, as opposed to gel-based coupling 

that is typical for ultrasound imaging exams, while preserving the hydration of the scaffold. 

Because there was no contact pressure between the tissue and the imaging transducer, tissue 

was not deformed during imaging; this resulted in better registrations of multiple sub-

volumes of image data.

The imaging chamber designed for this purpose was composed of two concentric 0.25 inch 

thick acrylic cylinders, each 3 inches tall. The outer diameters of the outer and inner 

cylinders were 6 and 5 inches, respectively. The outer cylinder was mounted to the 6 × 6 × 

0.3 inch acrylic base of the imaging chamber using acrylic glue. The inner cylinder was fit 

to the imaging chamber's base over a Vaseline-lubricated silicone O-ring to allow for quick 

coupling with a tight seal. Though not implemented in this study, this O-ring design also 

enables bidirectional imaging orientations (i.e. it is possible to rotate the inner chamber and 

image the contralateral side of the tissue sample). The interior cylinder served several 

purposes. It provided a frame for the tissue sample support webbing, made from 5.0 silk 

sutures (Ethicon, Somerville, NJ). This support webbing held the sample suspended in the 

interior of chamber. Additional suture was loosely tethered over the top of the tissue to 

prevent flotation or shifting during the imaging study. The interior cylinder of the sample 

imaging chamber also allowed for efficient buffer circulation but limited turbulence near the 

sample.

Preliminary studies showed that the peristaltic pump, which powered flow circuit #1, caused 

a slight periodicity in the flow rate through the scaffold samples as a result of the pump's 

rotary wheel design; this affected perfusion measurements. To prevent this artifact, a pulse 

dampener (Model 07596-20, Cole-Parmer, Vernon Hills, IL) was placed between the output 

from the peristaltic pump and the input to the sample. Preliminary studies also showed that 

contrast agent exiting the sample into the surrounding fluid after perfusing through the portal 
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circuit resulted in a decrease in image quality over time as contrast agent floated between the 

imaging transducer and the sample. To prevent this, a clearance fluid circuit was 

implemented (Figure 1). This circulated the fluid surrounding the scaffold sample though a 

microbubble sequestration and destruction chamber (MSDC) before reinjection into the 

imaging chamber. The MSDC was a 2 L Erlenmeyer flask in which a 1 MHz unfocused 

piston transducer was suspended (Valpey-Fisher, Hopkinton, MA) to facilitate contrast 

destruction. The 1 MHz piston transducer was pulsed at 10 Hz with a pressure of 460 kPa 

via a pulser (Model 801A, Ritec, Warwick RI). Under these conditions, free contrast agent 

in the solution flowing through the chamber was destroyed and thus removed from the 

circulating media. Media surrounding the scaffold was continually pumped through this 

chamber at 1 ml/min using a centrifugal pump (Model PQ-12, Greylor, Cape Coral, FL) 

powered by an external DC power supply (Model DIGI360, Electro Industries, Westbury, 

NY). Four nylon luer fittings were attached to the outer cylinder for coupling the sample 

imaging chamber to the two flow circuits. All fluid circuits used 0.125 inch inner diameter 

Tygon tubing, except between the catheter entering the scaffold sample and the outer 

cylinder of the imaging chamber (0.062 inch in diameter).

The microbubbles used in this study were prepared as previously described [17]. 

Microbubbles were introduced to the perfusion fluid circuit through a T-valve injection port 

located between the pulse dampener and the matrix scaffold. A 24-gauge needle was used to 

pierce the septum, and microbubbles could then be injected into the fluid circuit via a 

computer-controlled syringe pump (Harvard Apparatus, Holliston, MA). Microbubbles were 

administered into the fluid circuit at a concentration of 1.5 ×109 per mL in a 1 cc syringe 

and at a rate of 20 µL/min.

Three liver matrix scaffolds were imaged (Figure 3), hereafter referred to as samples 1 

through 3. The left lateral lobe (LLL) of each scaffold was selected as the lobe of interest, 

because it is easily accessed for imaging. Another advantage is its narrow morphology; the 

Vevo770 has a fixed acoustic focus, and thus has a narrow depth of field (< 1 cm). Our goal 

was to provide a holistic assessment of perfusion throughout a volume of tissue, and the left 

lateral lobe was most amenable to this objective. It should be noted that the techniques 

presented here could be extended to the entire volume of tissue using a transducer with a 

larger axial field of view. Each liver matrix scaffold was imaged with two contrast imaging 

modes: flash replenishment and acoustic angiography.

3.2 Registration of sub-volumes

Because the lateral field of view of the ultrasound transducers used for these imaging studies 

was insufficient to capture the entirety of the liver lobe of interest, multiple sub-volumes 

were acquired on each system and later registered together offline. The term “sub-volume” 

is used to describe a 3D volumetric image that does not holistically capture a tissue of 

interest. Registration of these sub-volumes was performed within the open source 3D Slicer 

environment (ver 4.2.1, National Alliance for Medical Image Computing) using the 

MergeAdjacentImages module, part of the TubeTK extension. This module is designed to 

register together two images that have a small degree of overlap along one of the axes. 

When the sub-volumes were registered together using the Merge module, they formed a 
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single cohesive volume for the liver lobe of interest for each image type (b-mode, flash 

replenishment, and acoustic angiography). The transform module was then used to register 

the three types of ultrasound image data to each other, creating a single composite 3D image 

for each of the livers imaged.

3.3 Grayscale anatomical imaging

Grayscale imaging (i.e. the standard non-contrast enhanced imaging) enabled tissue 

visualization for 3-dimensional region of interest (ROI) segmentations. These data were 

utilized to calculate tissue volumes of the left lateral lobe (LLL), which were 7.24, 5.93, and 

7.79 mL for samples #1–3, respectively.

3.4 Acoustic angiography

Vessel network architecture was assessed using more than 1,700 vessel segmentations 

extracted from the acoustic angiography image data. These data were rendered in 3D and 

color coded based on whether vessels are inside or outside the manually defined tissue 

boundary (Figure 4, Panels 1 and 2). Different numbers of vessels were extracted from each 

sample: for sample #1 (N = 415 vessel segmentations), sample #2 (N = 702 vessel 

segmentations), and sample #3 (N = 671 vessel segmentations). The volumes of these vessel 

network segmentations were computed to be 142.6, 226.6, and 241.3 µl and the total lengths 

were computed to be 1.0245, 1.6177, and 1.4646 meters for samples #1, #2, and #3, 

respectively.

The vascularity ratios were 1.97%, 3.82%, and 3.10% for samples #1, #2, and #3, 

respectively (Figure 4, Panel 1d). Although these metrics revealed sample #1 to contain 

fewer perfused vessels (both in total volume of the vessel network, and as a proportion of 

total volume of the matrix scaffold) the distribution of vessel sizes were similar between all 

three samples (Figure 4, Panel 2 - top).

3.5 Perfusion imaging

The perfusion values within each volume were assessed using regions of interest as defined 

based on anatomical data. Histograms of the perfused pixels within the scaffold volumes 

were computed and plotted as a function of perfusion time (Figure 4, Panel 2 -bottom). 

Samples #2 and #3 had similarly shaped histograms with similar mean perfusion times of 

3.128 ± 1.923 sec, and 3.017 ± 1.677 sec (mean µ ± σ), respectively. Sample #1, on the other 

hand, had a negatively skewed monotonically decreasing histogram with a mean perfusion 

of 1.381 ± 1.328 sec. This result was in alignment with the differences in the perfusion 

images, which could be qualitatively observed; sample #1 had a larger proportion of faster 

perfusing regions than samples #2 and #3 (Figure 4).

3.6 Scanning electron microscopy of intact liver vs. matrix scaffolds

Scanning electron microscopy (SEM) of liver versus matrix scaffolds (Figure 5, Panel 1, 5a 
and 5b) indicated that the decellularization protocol preserves the liver’s histological 

infrastructure, and that the macro- and micro-vascular channels are clearly intact in the liver 

matrix scaffolds (see arrows). These SEM images are complemented by our prior studies 

showing that all known extracellular matrix components, including all known collagen 
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types, are present and preserved at >98% of the levels found in normal liver, and that the 

scaffolds are negligible for nucleic acids and for cytoplasmic components [15]. All known 

matrix components in liver versus scaffolds were assessed by immunohistochemistry and 

found to be in their correct histological sites, meaning that the liver acinar zonation (zones 

1–3) is preserved in terms of gradients of matrix components [15, 18].

3.7 Engraftment efficiency of scaffold recellularization

As a proof-of-concept towards human liver organoid formation, matrix scaffolds with patent 

vasculature were reseeded with approximately 130 × 106 Hep3b cells, human hepatoblast-

like cells of a hepatic cell line (ATCC® HB-8064™). This cell line was established by 

Barbara Knowles and associates from a tumor from an 8-year old patient [19] and has been 

extensively characterized with respect to liver-specific gene expression by Darlington and 

associates [20]. The Hep3B cells were introduced into the matrix scaffold by perfusion 

through the matrix remnants of the portal vein using a peristaltic pump. The cells attached 

within minutes, and engraftment efficiency was near 100% by the end of the seeding 

process.

Over the course of 14 days, the medium from bioreactors with reseeded scaffolds was 

collected at varying time points and assayed by ELISA for secreted products (Figure 6). At 

the end of the 14 day culture period, scaffolds were evaluated by SEM, histology and 

immunohistochemistry. SEM images (Figure 5, Panel 1) show cells that have engrafted onto 

or into the matrix scaffold. Hematoxylin and eosin stained sections revealed a wide cell 

distribution throughout the scaffolds (Figure 5, Panel 2, 5a). The seeded cells actively 

proliferated throughout the 14 days of culture, as demonstrated by Ki67 staining (Figure 5, 

Panel 2, 5b), but they did not show any evidence of apoptosis (data not shown). In addition, 

the reseeded cells expressed liver-specific proteins in patterns correlated with their known 

locations in the normal liver acinus in vivo. Albumin (Figure 5, Panel 2, 5c) was found in all 

of the cells but at higher levels in regions of the scaffolds correlated with acinar zones 2 and 

3, whereas epithelial cell adhesion molecule, EpCAM (Figure 5, Panel 2, 5d), was 

expressed only by cells clustered near the matrix remnants of portal triads, acinar zone 1. 

EpCAM is a marker of hepatic stem/progenitors {15}. Hep3B cells have phenotypic traits 

indicating that they are hepatoblast-like [20]; normal hepatoblasts are found only in zone 1 

of the pediatric and adult liver acinus, and are at a lineage stage in which EpCAM is a key 

phenotypic trait.

4. Discussion

We describe a method of imaging for the evaluation of matrix extracts prepared by 

decellularization of tissues. Our techniques may provide important information regarding 

vascular patency, which is particularly important if such scaffolds are to be used as substrata 

for cell populations as part of organoid formation. The ultrasound images described here 

provide insights into the complexity of the matrix remnants of the liver architecture and of 

the vascular channels. The dimensions of the channels can be quantified precisely using 

these ultrasound technologies and corresponding segmentation algorithms, enabling the 

identification of categories of blood vessels for which such dimensions are known (up to 
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100 µm). Furthermore, these techniques provide a non-destructive method to assess vascular 

functionality.

When using ultrasound, contrast agents are utilized to image and quantify flow in 

microvessels, due to the poor acoustic contrast from blood. Microbubble contrast agents are 

the predominantly used vascular contrast agent for ultrasound. They are micron-sized lipid 

encapsulated gaseous spheres which, when immersed in a fluid, provide a strongly reflective 

interface and thus a high degree of contrast in an ultrasound image. Microbubble contrast 

agents (diameters typically between 1 and 5 µm) are much larger than vascular fenestrations, 

which allow them to remain within the luminal space. At the same time, they are small 

enough to pass through capillary beds. Since their rheology is similar to red blood cells [21], 

they are a suitable contrast agent for spatial mapping of vascular channel networks within 

matrix scaffold networks, thereby serving as surrogate markers for mapping cell movement 

within the scaffold.

In addition to traditional “grayscale” ultrasound to provide reference images of the scaffold 

physical structure, two different contrast-enhanced ultrasound techniques were utilized in 

this work to provide functional information about matrix scaffold microvasculature. The 

first technique, referred to as “flash replenishment”, or “dynamic contrast-enhanced 

perfusion imaging” (DCE-PI), allows relative blood perfusion to be spatially mapped by 

assessing the speed at which contrast agents refill a sample volume after clearance [22]. 

While this technique is not new, it has not previously been performed in this type of scaffold 

imaging application.

The other contrast imaging approach implemented in this study is a technique we refer to as 

“acoustic angiography”. This newly developed imaging method differs from traditional 

ultrasound imaging in that it is designed to visualize vascular and microvascular structure at 

high resolution rather than tissue anatomy [16, 23]. Unlike flash replenishment, acoustic 

angiography does not yet have the ability to parametrically map perfusion rates. However, it 

can provide detailed visualization of vessel architecture and provide a high resolution 

dataset from which vessels can be segmented and quantitatively mapped (vessel network 

volume, length, etc.). High resolution acoustic angiography requires a new type of 

transducer developed by our lab with collaborators in F. Stuart Foster’s group at the 

University of Toronto, Sunnybrook [16] that is not yet available on commercial ultrasound 

systems. The protocol utilized for this work involves three imaging scans: the first defines 

the scaffold’s physical structure (anatomy) with standard “b-mode” or grayscale ultrasound 

as is commonly used clinically; the second maps vessel architecture with high resolution 

acoustic angiography for vascular network visualization and quantitation; the third maps 

perfusion rates with flash replenishment. All three studies could be performed sequentially 

with appropriate system hardware.

The analyses of these scaffolds by imaging modalities provide evidence for the complexity 

of the matrix remnants of the liver architecture and of the vascular channels, as well as 

evidence of the scaffolds’ biological efficacy. These analyses also provide assistance with 

recellularization protocols. The dimensions of the channels can be quantified precisely using 
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these ultrasound technologies and corresponding segmentation algorithms; this enables 

identification of categories of blood vessels for which such dimensions are known.

From a quantitative standpoint, sample #1 was noticeably different from samples #2 and #3 

in both the acoustic angiography and perfusion images. Sample #1 illustrated a similar 

vessel size distribution to the other two samples, but showed a grossly reduced perfusion 

rate. This was due to a defect in sample #1 – the scaffold was damaged, resulting in several 

low resistance outlets for flow exiting the system. Although we were not able to perceive 

this damage prior to imaging, it was clearly reflected in the functional data. One perforated 

outlet was clearly visible within the acoustic angiography image set (Figures 3 and 4, 

Sample 1, yellow arrow).

Furthermore, during contrast infusion, it was possible to delineate vessels as part of either 

the hepatic or portal circulatory networks within the tissue volume (Figure 3, white vs. 
black arrows, respectively). Because contrast was infused though the portal vein, the 

hepatic circuit did not contain contrast and thus was not visualized under acoustic 

angiography. When the b-mode volumes were registered to the acoustic angiography 

volumes, flow voids in the b-mode, which were not perfused within the acoustic 

angiography dataset, could be classified as components of the hepatic circuit. Alternatively, 

we could have perfused the hepatic and portal circuits separately, although this was not done 

in our experiments for simplicity.

The ultrasound approaches we describe offer a non-destructive, high-resolution, and 

potentially inexpensive technique for visualization of scaffold perfusion. Additionally, these 

approaches offer a better depth of penetration into the scaffold than optical imaging 

approaches, allowing for the visualization of the entirety of the LLL (at the expense of both 

axial and lateral resolution, which is worse than systems imaging at optical wavelengths).

While the advantages of this protocol are numerous, there are also several drawbacks to this 

approach. Currently, the imaging technology presented for the acoustic angiography vessel 

mapping is not commercially available. Also, while several groups have made strides toward 

calibrating flash replenishment imaging against gold standards for perfusion rate [22, 24], 

the technique currently provides only relative quantitative measures for perfusion. This is 

adequate for assessing differences in regions within a given sample, such as would be 

necessary for identifying pockets of occlusion. It does not yet allow determination of 

absolute flow rates (mL·s−1·cm−3) within the scaffold without prior calibration based on the 

tissue volume. Finally, our technique was relatively slow, due to the 1-D form factor of our 

transducers, which were able to image only a single 2-D image slice at a time and required 

us to mechanically scan the transducers across the tissue volume. The 2-D matrix ultrasound 

transducers now in development are able to acquire entire image volumes at a much higher 

frame rate, although transducers required to perform real-time 3D contrast imaging at the 

resolution described here are not yet commercially available.

The rapid and successful recellularization of the scaffolds with the Hep3b cells 

demonstrated the patency and functionality of the matrix remnants of the vascular network. 

It is interesting that, although the vascular walls remain sufficiently patent to constrain 1–5 

Gessner et al. Page 11

Biomaterials. Author manuscript; available in PMC 2015 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



micron microbubble contrast agents, the cells were still able to cross the matrix remnants of 

the vascular channels and engraft into all parts of the matrix, including that associated with 

parenchymal cells (Figure 5, Panel 1, 5c). It is unclear how the cells were able to engraft 

after seeding by perfusion into a decellularized liver, since the matrix remnants of the 

vascular channels were intact. Many researchers who have successfully seeded cells into 

decellularized organs used decellularization protocols that destroyed facets of the vascular 

matrix [25]. Of those using protocols resulting in patent vascular channels ([26], it has never 

been explained how the cells are able to breach patent vascular matrix walls and engraft. 

Baptista et al. [26] hypothesized that their method of decellularization by harsh detergents 

followed by distilled water perfusion may have caused structural damage to the vascular 

architecture such as thinning of the matrix or creating small holes; this might, in turn, have 

allowed cells to migrate across the permeabilized walls.

We have confirmed that our decellularization method results in intact scaffolds without 

evidence of a defect: there were no breaches of the vascular matrix greater than 5 microns 

prior to seeding. An alternative explanation for the cells’ ability to breach matrix walls and 

engraft derives from hepatocyte transplantation studies [27, 28]. In these studies it was 

shown that sinusoidal endothelial cells can shift to allow the hepatocytes access to larger 

fenestrae through which they achieve access and integrate into the parenchymal cell plates. 

SEM imaging of our reseeded scaffolds suggest that cells are attaching to and engaging the 

matrix and perhaps are able to squeeze through residual fenestrae left behind after 

decellularization (Figure 5, Panel 1, 5d, arrows).

Non-destructive 3D perfusion imaging of decellularized organs and tissues could have 

significant value in tissue engineering investigations and also in tracking recellularization. 

Contrast ultrasound techniques have been shown to have utility in measuring 

microvasculature structural information and relative flow rate correlated with anatomical 

orientation in tissue scaffolds. The recellularization studies presented here indicate that cells 

are successfully being delivered and engrafting into the matrix remnants of the liver 

parenchyma by perfusion seeding (Figure 5, Panel 2). This perfusion seeding method is only 

possible in a patent vascular network, which is confirmed through the use of this high 

resolution acoustic angiography technology. Ongoing current studies include the correlation 

of structural information, such as vessel diameters, perfusion rates, local fluid shear rates, 

and patency with the gold standard of histological data after recellularization procedures are 

complete. Also, ligand-bearing microbubbles could be implemented to perform 3D 

ultrasonic molecular imaging, which can be used to spatially map specific regions of cell 

attachment and cell differentiation using biomarkers [13] and thus could be used to detect 

spatial distributions of different types of cells or varying biological states of cells in the 

scaffold.

Extracellular matrix scaffolds prepared by decellularization protocols are central to the 

strategies for organoid formation, since individual and purified matrix components give only 

partial effects in induction and maintenance of differentiated cells. Efforts to isolate 

successful matrix scaffolds have dominated recent investigations [25, 26, 29–33]. All of the 

protocols have proven successful in isolating matrix extracts dominated by cross-linked 

collagens. However, most do not generate scaffolds with patent vasculature [25, 29], or they 
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yield scaffolds in which uncross-linked, nascent collagens and associated matrix 

components are lost [26]. The protocol we present here preserves both the cross-linked and 

the uncross-linked nascent collagens and preserves more of the adhesion molecules, 

proteoglycans and growth factors/cytokines that are bound to these matrix components [15]. 

The proof-of-principle studies with Hep3B cells indicate that the richer matrix extracts such 

as the matrix scaffolds confer very rapid attachment (within minutes), near 100% 

engraftment, and significant induction of tissue-specific functions (to the extent possible 

with a transformed hepatic cell line).

Human liver organoids are being established for use as bioartificial livers through which a 

patient’s blood can be perfused for detoxification and synthesis of critical liver-specific 

products. We have previously shown that normal liver cells bound to frozen sections of 

matrix scaffolds and maintained in a serum-free, hormonally defined media designed for 

mature cells are fully functional and stable ex vivo for months [15]. If this proves true for the 

scaffolds used intact (i.e. not as frozen sections) for organoid formation, when these 

scaffolds are recellularized with freshly isolated human cells they will offer opportunities for 

liver-assist devices for patients. They also will offer the potential to generate grafts for 

transplantation into patients.

5. Conclusions

Non-destructive 3D perfusion imaging of decellularized organs and tissues has significant 

value in tissue engineering investigations and also in tracking recellularization processes of 

matrix scaffolds in organoid formation. Contrast ultrasound techniques have been shown to 

have utility in measuring microvasculature structural information and relative flow rate 

correlated with anatomical orientation in tissue scaffolds. The recellularization studies 

presented here indicate that cells are successfully being delivered and engrafting into intact 

scaffolds by perfusion seeding. This perfusion seeding method is only possible in a patent 

vascular network, a finding that is confirmed through the use of this high resolution acoustic 

angiography technology.
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Figure 1. 
Schematics for the sample imaging chamber. a) Assembled sample imaging chamber and b) 

exploded view of the sample imaging chamber. c) A top-down cartoon schematic illustrating 

the two flow circuits in the setup. Flow Circuit 1 provided perfusion and microbubbles to the 

liver scaffold, while Flow Circuit 2 provided continuous circulation through the 

microbubble sequestration and destruction chamber (MSDC) to remove contrast excreted 

from the sample.
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Figure 2. 
The orientation of the matrix scaffold sample as viewed from above with the following 

visible lobes labeled: a) left lateral lobe (LLL), inferior right lobe (IRL), anterior caudate 

lobe (ACL), posterior caudate lobe (PCL), superior right lobe (SRL), and median lobe (ML). 

The LLL was the lobe imaged in this study. Lobes were identified in this figure via an 

available surgical guide. b) Orientation of the imaging sub-volumes relative to the tissue 

sample. XY dimensions were lateral and axial axes within the ultrasound coordinate space, 

with the Z-axis being the elevational scan direction. c) Schematic explaining the registration 

of multiple 3D volumes from three distinct ultrasound imaging approaches into the final 

composite volume.
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Figure 3. 
A compilation of image data acquired of the three matrix scaffold samples. Yellow arrow 

indicates location of sample #1, which was perforated and thus leaking microbubbles. Each 

row was acquired with the following imaging modes (from top to bottom): Acoustic 

angiography, semi-automated segmentations from acoustic angiography data, and b-mode. 

White and black arrows on the b-mode images indicate vessels identified as part of either the 

portal or hepatic circuits, respectively.
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Figure 4. 
Panel 1. (a–c) 3D renderings of the matrix acoustic angiography data. Color is defined as 

either inside (green) or outside (purple) of the manually defined tissue border. d) 

Quantitative assessments of vascular network volume, length, and vascularity ratio. Data are 

normalized to sample #1.

Panel 2. Perfusion comparisons between the three liver scaffolds evaluated from the flash-

replenishment imaging. (Top) Area normalized vessel size histograms computed from the 

vessel segmentations. (Bottom) Area normalized perfusion rate histograms.
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Figure 5. 
Panel 1. Scanning electron microscopy (SEM) of a) normal adult rat liver fixed with 4% 

paraformaldehyde and subjected to SEM; b) normal rat liver matrix scaffold. The major and 

minor vascular channels are evident in both the liver and in the scaffold. Empty spaces are 

visible where parenchymal cells previously resided (thin arrow). Major vascular channels 

are also visible (thick arrow); c) low magnification image of rat liver matrix scaffold 

reseeded with Hep3b cells. Large numbers of cells are found bound to the matrix throughout 

the scaffolds. This attachment occurs within minutes of seeding the cells and results in near 

100% engraftment by the end of the seeding process; d)Higher magnification image of rat 

liver matrix scaffold showing Hep3b cells that have attached, spread and are forming classic 

cellular extensions and connections with each other. They engage (thick white arrow) the 

lumen of the vessel wall and perhaps pass through the fenestrae (thin white arrow) that 

remain following decellularization.
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Panel 2. a) Hematoxylin and eosin stained sections revealed a cell distribution throughout 

the matrix scaffolds. b) The seeded cells actively proliferated through day 14, demonstrated 

by Ki67 staining (seen in magnified version in b’). c) The Hep3b cells expressed peak 

albumin levels (albumin=green, DAPI=blue) in regions of the matrix scaffolds correlated 

with zones 2 and 3 of the liver acinus. d) Cells bound to matrix remnants of the portal triads 

(zone 1) expressed albumin more weakly than elsewhere on the matrix. By contrast, 

EpCAM expression was quite strong in the cells bound in these regions but weak or 

negligible if in matrix regions associated with zones 2 and 3 (EpCAM=green, DAPI=blue). 

This is surprising, given that the test cells are a cell line and yet they apparently still have the 

capacity to show some degree of zonation of functions if bound to specific regions of the 

matrix scaffolds.
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Figure 6. 
Measurements of albumin and urea secretion by Hep3B cells seeded in matrix scaffolds 

(n=3) and cultured over a 14-day period. Levels are normalized to the number of initial 

number of cells seeded into the scaffold. Symbols indicate media collection over 24 hours 

($), 48 hours (x), 72 hours (*), and 96 hours (+). Statistical analyses were unable to be 

performed, and, therefore, raw data are presented.
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