292 research outputs found

    Distribution and genetic diversity of Dothistroma septosporum in Pinus brutia forests of south-western Turkey

    Get PDF
    The support of the DIAROD project, funded as EU COST Action FP1102, is gratefully acknowledged. Forest engineers Ali Datumani and Erdal Örtel are thanked for their great help in the field. We are grateful to the anonymous reviewers who helped improve the manuscript. We would like to thank Dr Alkan Unlu for providing the climate data and to Dr Ilker Ercanli for performing the statistical analysis. The study was financially supported by the Forestry Commission, United Kingdom and by the European Regional Development Fund, Project Phytophthora Research Centre Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000453.Peer reviewedPostprin

    The curse of conservation: empirical evidence demonstrating that changes in land-use legislation drove catastrophic bushfires in Southeast Australia

    Get PDF
    Protecting “wilderness” and removing human involvement in “nature” was a core pillar of the modern conservation movement through the 20th century. Conservation approaches and legislation informed by this narrative fail to recognise that Aboriginal people have long valued, used, and shaped most landscapes on Earth. Aboriginal people curated open and fire-safe Country for millennia with fire in what are now forested and fire-prone regions. Settler land holders recognised the importance of this and mimicked these practices. The Land Conservation Act of 1970 in Victoria, Australia, prohibited burning by settler land holders in an effort to protect natural landscapes. We present a 120-year record of vegetation and fire regime change from Gunaikurnai Country, southeast Australia. Our data demonstrate that catastrophic bushfires first impacted the local area immediately following the prohibition of settler burning in 1970, which allowed a rapid increase in flammable eucalypts that resulted in the onset of catastrophic bushfires. Our data corroborate local narratives on the root causes of the current bushfire crisis. Perpetuation of the wilderness myth in conservation may worsen this crisis, and it is time to listen to and learn from Indigenous and local people, and to empower these communities to drive research and management agendas.1. Introduction 1.1. Study Region 1.2. A confluence of Factors 2. Materials and Methods 2.1. Core Collection & Chronology 2.2. Pollen 2.3. Macroscopic Charcoal & Charanalysis 2.4. Magnetic Susceptibility 2.5. Numerical Data Analysis 3. Results 3.1. Chronology 3.2. Pollen 3.3. Macroscopic Charcoal & Charanalysis 3.4. Magnetic Susceptibility 3.5. Numerical Data Analysis 4. Discussion 4.1. Landscape Change between ca. 1900–2021 4.2. The Environmental Impact of Legislation 4.3. The Curse of Conservation That Ignores People as Managers and History as a Prelud

    Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model

    Get PDF
    Purpose: To investigate material density, flow, and viscosity effects on microsphere distribution within an in vitro model designed to simulate hepatic arteries.Materials and Methods: A vascular flow model was used to compare distribution of glass and resin surrogates in a clinically derived flow range (60–120 mL/min). Blood-mimicking fluid (BMF) composed of glycerol and water (20%–50% vol/vol) was used to simulate a range of blood viscosities. Microsphere distribution was quantified gravimetrically, and injectate solution was dyed to enable quantification by UV spectrophotometry. Microsphere injection rate (5–30 mL/min) and the influence of contrast agent dilution of injection solution (0%–60% vol/vol) were also investigated.Results: No significant differences in behavior were observed between the glass and resin surrogate materials under any tested flow conditions (P = .182; n = 144 injections). Microspheres tend to align more consistently with the saline injection solution (r2 = 0.5712; n = 144) compared with total BMF flow distribution (r2 = 0.0104; n = 144). The most predictable injectate distribution (ie, greatest alignment with BMF flow, &lt; 5% variation) was demonstrated with &gt; 10-mL/min injection rates of pure saline solution, although &lt; 20% variation with glass microsphere distribution was observed with injection solution containing as much as 30% contrast medium when injected at &gt; 20 mL/min.Conclusions: Glass and resin yttrium-90 surrogates demonstrated similar distribution in a range of clinically relevant flow conditions, suggesting that microsphere density does not have a significant influence on microsphere distribution. Injection parameters that enhanced the mixing of the spheres with the BMF resulted in the most predictable distribution.<br/

    Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom : 2015/16 mid-season results

    Get PDF
    In 2015/16, the influenza season in the United Kingdom was dominated by influenza A(H1N1)pdm09 circulation. Virus characterisation indicated the emergence of genetic clusters, with the majority antigenically similar to the current influenza A(H1N1)pdm09 vaccine strain. Mid-season vaccine effectiveness (VE) estimates show an adjusted VE of 41.5% (95% confidence interval (CI): 3.0–64.7) against influenza-confirmed primary care consultations and of 49.1% (95% CI: 9.3–71.5) against influenza A(H1N1)pdm09. These estimates show levels of protection similar to the 2010/11 season, when this strain was first used in the seasonal vaccine

    Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom : 2014/15 end of season results

    Get PDF
    The 2014/15 influenza season in the United Kingdom (UK) was characterised by circulation of predominantly antigenically and genetically drifted influenza A(H3N2) and B viruses. A universal paediatric influenza vaccination programme using a quadrivalent live attenuated influenza vaccine (LAIV) has recently been introduced in the UK. This study aims to measure the end-of-season influenza vaccine effectiveness (VE), including for LAIV, using the test negative case–control design. The overall adjusted VE against all influenza was 34.3% (95% confidence interval (CI) 17.8 to 47.5); for A(H3N2) 29.3% (95% CI: 8.6 to 45.3) and for B 46.3% (95% CI: 13.9 to 66.5). For those aged under 18 years, influenza A(H3N2) LAIV VE was 35% (95% CI: −29.9 to 67.5), whereas for influenza B the LAIV VE was 100% (95% CI:17.0 to 100.0). Although the VE against influenza A(H3N2) infection was low, there was still evidence of significant protection, together with moderate, significant protection against drifted circulating influenza B viruses. LAIV provided non-significant positive protection against influenza A, with significant protection against B. Further work to assess the population impact of the vaccine programme across the UK is underway

    The increasing threat to European forests from the invasive foliar pine pathogen, Lecanosticta acicola

    Get PDF
    European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain.Derived from Euphresco project 'Brownspotrisk,' this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portaloff orestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia.The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Pre-liminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions.Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts' genetic make-up, but could also reflect the signif-icant variation in L. acicola populations and lineages found across Europe. This study served to highlight sig-nificant gaps in our understanding of the pathogen's behaviour.Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe

    Transferability of PCR-based diagnostic protocols: An international collaborative case study assessing protocols targeting the quarantine pine pathogen Fusarium circinatum

    Get PDF
    [EN] Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii, causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F. circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F. circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F. circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed.This work was supported by COST action FP1406 Pinestrength . The work of the Estonian team was supported by the Estonian Science Foundation grants PSG136 and IUT21-04. The work of Portuguese team from INIAV was financed by INIAV I.P. Institute. The work at U. Aveiro (Portugal) was financed by European Funds through COMPETE and National Funds through the Portuguese Foundation for Science and Technology (FCT) to CESAM (UID/AMB/50017/2013 POCI-01- 0145-FEDER-007638). The work of Slovenian team was financed through Slovenian Research Agency (P4-0107) and by the Slovenian Ministry of Agriculture, Forestry and Food (Public Forestry Service). The British work was financially supported by the Forestry Commission, UK. The French work was financially supported by the French Agency for Food, environmental and occupational health safety (ANSES). The work in New Zealand was funded by Operational Research Programmes, Ministry for Primary Industries, New Zealand.Ioos, R.; Aloi, F.; Piskur, B.; Guinet, C.; Mullett, M.; Berbegal Martinez, M.; Bragança, H.... (2019). Transferability of PCR-based diagnostic protocols: An international collaborative case study assessing protocols targeting the quarantine pine pathogen Fusarium circinatum. Scientific Reports. 9:1-17. https://doi.org/10.1038/s41598-019-44672-8S1179Schmale, D. G. III & Gordon, T. R. Variation in susceptibility to pitch canker disease, caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathol. 52, 720–725 (2003).Gordon, T. R., Kirkpatrick, S. C., Aegerter, B. J., Wood, D. L. & Storer, A. J. Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum). Plant Pathol. 55, 231–237 (2006).Martínez‐Álvarez, P., Pando, V. & Diez, J. J. Alternative species to replace Monterey pine plantations affected by pitch canker caused by Fusarium circinatum in northern Spain. Plant Pathol. 63, 1086–1094, https://doi.org/10.1111/ppa.12187 (2014).Wingfield, M. J. et al. Pitch canker caused by Fusarium circinatum - a growing threat to pine plantations and forests worldwide. Australas. Plant Path. 37, 319–334 (2008).Bezos, D., Martinez-Alvarez, P., Fernandez, M. & Diez, J. J. Epidemiology and management of pine pitch canker disease in Europe - a review. Balt. For. 23, 279–293 (2017).Landeras, E. et al. Outbreak of pitch canker caused by Fusarium circinatum on Pinus spp. in Northern Spain. Plant Dis. 89, 1015 (2005).Bragança, H., Diogo, E., Moniz, F. & Amaro, P. First report of pitch canker on pines caused by Fusarium circinatum in Portugal. Plant Dis. 93, 1079–1079, https://doi.org/10.1094/PDIS-93-10-1079A (2009).EFSA. Risk assessment of Gibberella circinata for the EU territory and identification and evaluation of risk management options. EFSA Journal 8, 1620 (2010).Carlucci, A., Colatruglio, L. & Frisullo, S. First report of pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Dis. 91, 1683 (2007).Vettraino, A., Potting, R. & Raposo, R. EU legislation on forest plant health: an overview with a focus on Fusarium circinatum. Forests 9, 568 (2018).Möykkynen, T., Capretti, P. & Pukkala, T. Modelling the potential spread of Fusarium circinatum, the causal agent of pitch canker in Europe. Annals of Forest Sciences 72, 169–181 (2015).Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, https://doi.org/10.1373/clinchem.2008.112797 (2009).EPPO. PM 7/91(1): Gibberella circinata. EPPO Bull. 39, 298–309 (2009).ISTA. 7-009: Detection of Gibberella circinata on Pinus spp. (pine) and Pseudotsuga menziesii (Douglas-fir) seed. Validated Seed Health Testing Methods (2015).IPPC. ISPM 27, Diagnostic protocols for regulated pests, DP 22: Fusarium circinatum (2017).EPPO. PM 7/98 (2) Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. EPPO Bull. 44, 117–147, https://doi.org/10.1111/epp.12118 (2014).Nirenberg, H. I. & O’Donnell, K. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90, 434–458 (1998).Britz, H., Coutinho, T. A., Wingfield, M. J. & Marasas, W. F. O. Validation of the description of Gibberella circinata and morphological differentiation of the anamorph Fusarium circinatum. Sydowia 54, 9–22 (2002).Mullett, M., Pérez-Sierra, A., Armengol, J. & Berbegal, M. Phenotypical and molecular characterisation of Fusarium circinatum: correlation with virulence and fungicide sensitivity. Forests 8, 458 (2017).Herron, D. A. et al. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Stud. Mycol. 80, 131–150, https://doi.org/10.1016/j.simyco.2014.12.001 (2015).Storer, G. & Clark, S. L. Association of the pitch canker fungus, Fusarium subglutinans f.sp. pini, with Monterey pine seeds and seedlings in California. Plant Pathol. 47, 649–656, https://doi.org/10.1046/j.1365-3059.1998.00288.x (1998).Schweigkofler, W., O’Donnell, K. & Garbelotto, M. Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Appl. Environ. Microbiol. 70, 3512–3520 (2004).Ramsfield, T. D., Dobbie, K., Dick, M. A. & Ball, R. D. Polymerase chain reaction-based detection of Fusarium circinatum, the causal agent of pitch canker disease. Molecular Ecology Resources 8, 1270–1273 (2008).Ioos, R., Fourrier, C., Iancu, G. & Gordon, T. R. Sensitive Detection of Fusarium circinatum in Pine Seed by Combining an Enrichment Procedure with a Real-Time Polymerase Chain Reaction Using Dual-Labeled Probe Chemistry. Phytopathology 99, 582–590, https://doi.org/10.1094/PHYTO-99-5-0582 (2009).Dreaden, T. J., Smith, J. A., Barnard, E. L. & Blakeslee, G. Development and evaluation of a real-time PCR seed lot screening method for Fusarium circinatum, causal agent of pitch canker disease. For. Path. 42, 405–411, https://doi.org/10.1111/j.1439-0329.2012.00774.x (2012).Fourie, G. et al. Culture-independent detection and quantification of Fusarium circinatum in a pine-producing seedling nursery. Southern Forests: a Journal of Forest Science 76, 137–143, https://doi.org/10.2989/20702620.2014.899058 (2014).Lamarche, J. et al. Molecular detection of 10 of the most unwanted alien forest pathogens in Canada using Real-Time PCR. PLoS ONE 10, e0134265, https://doi.org/10.1371/journal.pone.0134265 (2015).Luchi, N., Pepori, A. L., Bartolini, P., Ioos, R. & Santini, A. Duplex real-time PCR assay for the simultaneous detection of Caliciopsis pinea and Fusarium circinatum in pine samples. Applied Microbiology and Biotechnology 102, 7135–7146, https://doi.org/10.1007/s00253-018-9184-1 (2018).Sandoval-Denis, M., Swart, W. J. & Crous, P. W. New Fusarium species from the Kruger National Park, South Africa. MycoKeys 34, https://doi.org/10.3897/mycokeys.34.25974 (2018).Steenkamp, E. T., Wingfield, B. D., Desjardins, A. E., Marasas, W. F. & Wingfield, M. J. Cryptic speciation in Fusarium subglutinans. Mycologia 94, 1032–1043 (2002).Garcia-Benitez, C. et al. Proficiency of real-time PCR detection of latent Monilinia spp. infection in nectarine flowers and fruit. Phytopathologia Mediterranea 56, 242–250 (2017).Ebentier, D. L. et al. Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. Water Research 47, 6839–6848, https://doi.org/10.1016/j.watres.2013.01.060 (2013).Bustin, S. & Huggett, J. qPCR primer design revisited. Biomolecular Detection and Quantification 14, 19–28, https://doi.org/10.1016/j.bdq.2017.11.001 (2017).Grosdidier, M., Aguayo, J., Marçais, B. & Ioos, R. Detection of plant pathogens using real-time PCR: how reliable are late Ct values? Plant Pathol. 66, 359–367, https://doi.org/10.1111/ppa.12591 (2017).Al-Soud, W. A. & Rådström, P. Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Applied and environmental microbiology 64, 3748–3753 (1998).Saunders, G. C., Dukes, J., Parkes, H. C. & Cornett, J. H. Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses. Clinical chemistry 47, 47–55 (2001).Boutigny, A.-L. et al. Optimization of a real-time PCR assay for the detection of the quarantine pathogen Melampsora medusae f. sp. deltoidae. Fungal Biology 117, 389–398, https://doi.org/10.1016/j.funbio.2013.04.001 (2013).Guinet, C., Fourrier-Jeandel, C., Cerf-Wendling, I. & Ioos, R. One-step detection of Monilinia fructicola, M. fructigena, and M. laxa on Prunus and Malus by a multiplex real-time PCR assay. Plant Dis. 100, 2465–2474, https://doi.org/10.1094/PDIS-05-16-0655-RE (2016).Aguayo, J. et al. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4. PLoS ONE 12, e0171767, https://doi.org/10.1371/journal.pone.0171767 (2017).Broeders, S. et al. Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science & Technology 37, 115–126, https://doi.org/10.1016/j.tifs.2014.03.008 (2014).Pelloux, H. et al. A second European collaborative study on polymerase chain reaction for Toxoplasma gondii, involving 15 teams. FEMS Microbiology Letters 165, 231–237, https://doi.org/10.1111/j.1574-6968.1998.tb13151.x (1998).Leslie, J. F. & Summerell, B. A. The Fusarium laboratory manual. (Blackwell Publishing, 2006).Ioos, R. et al. Test performance study of diagnostic procedures for identification and detection of Gibberella circinata in pine seeds in the framework of a EUPHRESCO project. EPPO Bull. 43, 267–275, https://doi.org/10.1111/epp.12037 (2013).Geiser, D. M. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110, 473–479 (2004).White, T. J., Bruns, T., Lee, S. & Taylor, J. In PCR protocols: a guide to method and applications (eds Gelfand, D. H., Innis M. A., Sninsky, J. J. and White, T. J.) 315–322 (Academic Press, 1990).Nirenberg, H. I. A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany 59, 1599–1609 (1981).Chabirand, A., Loiseau, M., Renaudin, I. & Poliakoff, F. Data processing of qualitative results from an interlaboratory comparison for the detection of “Flavescence dorée” phytoplasma: How the use of statistics can improve the reliability of the method validation process in plant pathology. PLoS ONE 12, e0175247, https://doi.org/10.1371/journal.pone.0175247 (2017).Loreti, S. et al. Performance of diagnostic tests for the detection and identification of Pseudomonas syringae pv. actinidiae (Psa) from woody samples. European Journal of Plant Pathology, https://doi.org/10.1007/s10658-018-1509-5 (2018).International Standardization Organization. ISO 16140:2003 Microbiology of food and animal feeding stuffs - Protocol for the validation of alternative methods (2003).Langton, S., Chevennement, R., Nagelkerke, N. & Lombard, B. Analysing collaborative trials for qualitative microbiological methods: accordance and concordance. International Journal of Food Microbiology 79, 175–181 (2002).R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2014). R Foundation for Statistical Computing (2017).Wickham, H. ggplot2 : elegant graphics for data analysis. (Springer, 2016)

    Biomechanical evaluation of fixation of comminuted olecranon fractures: one-third tubular versus locking compression plating

    Get PDF
    New concepts in plate fixation have led to an evolution in plate design for olecranon fractures. The purpose of this study was to compare the stiffness and strength of locking compression plate (LCP) fixation to one-third tubular plate fixation in a cadaveric comminuted olecranon fracture model with a standardised osteotomy. Five matched pairs of cadaveric elbows were randomly assigned for fixation by either a contoured LCP combined with an intramedullary screw and unicortical locking screws or a one-third tubular plate combined with bicortical screws. Construct stiffness was measured by subjecting the specimens to cyclic loading while measuring gapping at the osteotomy site. Construct strength was measured by subjecting specimens to ramp load until failure. There was no significant difference in fixation stiffness and strength between the two fixation methods. All failures consisted of failure of the bone and not of the hardware. Contoured LCP and intramedullary screw fixation can be used as an alternative treatment method for comminuted olecranon fractures as its stiffness and strength were not significantly different from a conventional plating techniqu
    corecore