1,167 research outputs found
Recommended from our members
The Beagle landing site in Isidis Planitia
The Mars probe Beagle 2 will land in Isidis Planitia. This region satisfies the engineering constraints and has evidence for particularly volatile-rich subsoil. Isidis provides a suitable place for the lander to search for H2O and organic matter
Cherenkov Glue in Opaque Nuclear Medium
The spectrum of Cherenkov gluons is calculated within the framework of
in-medium QCD. It is compared with experimental data on the double-humped
structure around the away-side jet obtained at RHIC. The values of the real and
imaginary parts of the nuclear permittivity are obtained from these fits. It is
shown that accounting for an additional smearing due to resonance-like
production of final hadrons allows to achieve an agreement with experimental
data
The low energy limit of the non-commutative Wess-Zumino model
The non-commutative Wess-Zumino model is used as a prototype for studying the
low energy behaviour of a renormalizable non-commutative field theory. We start
by deriving the potential mediating the fermion-fermion and boson-boson
interactions in the non-relativistic regime. The quantum counterparts of these
potentials are afflicted by irdering ambiguities but we show that there exists
an ordering prescription which makes them hermitean. For space/space
noncommutativity it turns out that Majorana fermions may be pictured as rods
oriented perpendicularly to the direction of motion showing a lack of
localituy, while bosons remain insensitive to the effects of noncommutativity.
For time/space noncommutativity bosopns and fermions can be regarded as rods
oriented along the direction of motion. For both cases of noncommutativity the
scattering state described scattered waves, with at least one wave having
negative time delay signalizing the underlying nonlocality. The superfield
formulation of the model is used to compute the corresponding effective action
in the one- and two-loop approximations. In the case of time/space
noncommutativity, unitarity is violated in the relativistic regime. However,
this does not preclude the existence of the unitary low energy limit.Comment: 14 pages, 2 figures, minor correction
Recommended from our members
Analysis of energy-efficiency investment decisions by small and medium-sized manufacturers
This report highlights the results of a comprehensive analysis of investment decisions regarding energy-efficiency measures at small and medium-sized manufacturing plants. The analysis is based on the experiences of companies participating in the DOE Industrial Assessment Center (IAC) program. The IAC program is a network of university-based centers that provides energy and waste assessments to small and medium-sized manufacturing plants. The purposes of this report are to do the following: (1) Examine what the data collected reveal about patterns of implementation of recommended energy- efficiency measures, (2) Evaluate how various factors, such as the type of industry, the characteristics of the manufacturing plants, or the cost of the measures, appear to effect implementation rates, (3) Examine reasons why recommended energy-saving measures are accepted or rejected
ac Josephson effect in the resonant tunneling through mesoscopic superconducting junctions
We investigate ac Josephson effect in the resonant tunneling through
mesoscopic superconducting junctions. In the presence of microwave irradiation,
we show that the trajectory of multiple Andreev reflections can be closed by
emitting or absorbing photons. Consequently, photon-assisted Andreev states are
formed and play the role of carrying supercurrent. On the Shapiro steps, dc
component appears when the resonant level is near a series of positions with
spacing of half of the microwave frequency. Analytical result is derived in the
limit of infinite superconducting gap, based on which new features of ac
Josephson effect are revealed.Comment: 11 pages, 3 figure
Calibration of the length of a chain of single gold atoms
Using a scanning tunneling microscope or mechanically controllable break
junctions it has been shown that it is possible to control the formation of a
wire made of single gold atoms. In these experiments an interatomic distance
between atoms in the chain of ~3.6 Angstrom was reported which is not
consistent with recent theoretical calculations. Here, using precise
calibration procedures for both techniques, we measure length of the atomic
chains. Based on the distance between the peaks observed in the chain length
histogram we find the mean value of the inter-atomic distance before chain
rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical
calculations for the bond length. The discrepancy with the previous
experimental measurements was due to the presence of He gas, that was used to
promote the thermal contact, and which affects the value of the work function
that is commonly used to calibrate distances in scanning tunnelling microscopy
and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure
Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments
Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity
Gaseous Galaxy Halos
Galactic halo gas traces inflowing star formation fuel and feedback from a
galaxy's disk and is therefore crucial to our understanding of galaxy
evolution. In this review, we summarize the multi-wavelength observational
properties and origin models of Galactic and low redshift spiral galaxy halo
gas. Galactic halos contain multiphase gas flows that are dominated in mass by
the ionized component and extend to large radii. The densest, coldest halo gas
observed in neutral hydrogen (HI) is generally closest to the disk (< 20 kpc),
and absorption line results indicate warm and warm-hot diffuse halo gas is
present throughout a galaxy's halo. The hot halo gas detected is not a
significant fraction of a galaxy's baryons. The disk-halo interface is where
the multiphase flows are integrated into the star forming disk, and there is
evidence for both feedback and fueling at this interface from the temperature
and kinematic gradient of the gas and HI structures. The origin and fate of
halo gas is considered in the context of cosmological and idealized local
simulations. Accretion along cosmic filaments occurs in both a hot (> 10^5.5 K)
and cold mode in simulations, with the compressed material close to the disk
the coldest and densest, in agreement with observations. There is evidence in
halo gas observations for radiative and mechanical feedback mechanisms,
including escaping photons from the disk, supernova-driven winds, and a
galactic fountain. Satellite accretion also leaves behind abundant halo gas.
This satellite gas interacts with the existing halo medium, and much of this
gas will become part of the diffuse halo before it can reach the disk. The
accretion rate from cold and warm halo gas is generally below a galaxy disk's
star formation rate, but gas at the disk-halo interface and stellar feedback
may be important additional fuel sources.Comment: 50 pages, 9 figures (1 in 3D, view with a current version of Adobe),
to appear in ARA&A, 50, 49
Generalized Parton Distributions from Hadronic Observables: Non-Zero Skewness
We propose a physically motivated parametrization for the unpolarized
generalized parton distributions, H and E, valid at both zero and non-zero
values of the skewness variable, \zeta. Our approach follows a previous
detailed study of the \zeta=0 case where H and E were determined using
constraints from simultaneous fits of the experimental data on both the nucleon
elastic form factors and the deep inelastic structure functions in the non
singlet sector. Additional constraints at \zeta \neq 0 are provided by lattice
calculations of the higher moments of generalized parton distributions. We
illustrate a method for extracting generalized parton distributions from
lattice moments based on a reconstruction using sets of orthogonal polynomials.
The inclusion in our fit of data on Deeply Virtual Compton Scattering is also
discussed. Our method provides a step towards a model independent extraction of
generalized distributions from the data. It also provides an alternative to
double distributions based phenomenological models in that we are able to
satisfy the polynomiality condition by construction, using a combination of
experimental data and lattice, without resorting to any specific mathematical
construct.Comment: 29 pages, 8 figures; added references, changed text in several place
- …