28,718 research outputs found
Recommended from our members
Sedimentary rocks in Bequerel crater: origin as polar layered deposits during high obliquity
Abstract not available
Out of equilibrium quantum field dynamics of an initial thermal state after a change in the external field
The effects of the initial temperature in the out of equilibrium quantum
field dynamics in the presence of an homogeneous external field are
investigated. We consider an initial thermal state of temperature T for a
constant external field J. A subsequent sign flip of the external field, J to
-J, gives rise to an out of equilibrium nonperturbative quantum field dynamics.
The dynamics is studied here for the symmetry broken lambda(Phi^2)^2 scalar N
component field theory in the large N limit. We find a dynamical effective
potential for the expectation value that helps to understand the dynamics. The
dynamics presents two regimes defined by the presence or absence of a temporal
trapping close to the metastable equilibrium position of the potential. The two
regimes are separated by a critical value of the external field that depends on
the initial temperature. The temporal trapping is shorter for larger initial
temperatures or larger external fields. Parametric resonances and spinodal
instabilities amplify the quantum fluctuations in the field components
transverse to the external field. When there is a temporal trapping this is the
main mechanism that allows the system to escape from the metastable state for
large N. Subsequently backreaction stops the growth of the quantum fluctuations
and the system enters a quasiperiodic regime.Comment: LaTeX, 19 pages, 12 .eps figures, improved version to appear in Phys
Rev
Existence of an information unit as a postulate of quantum theory
Does information play a significant role in the foundations of physics?
Information is the abstraction that allows us to refer to the states of systems
when we choose to ignore the systems themselves. This is only possible in very
particular frameworks, like in classical or quantum theory, or more generally,
whenever there exists an information unit such that the state of any system can
be reversibly encoded in a sufficient number of such units. In this work we
show how the abstract formalism of quantum theory can be deduced solely from
the existence of an information unit with suitable properties, together with
two further natural assumptions: the continuity and reversibility of dynamics,
and the possibility of characterizing the state of a composite system by local
measurements. This constitutes a new set of postulates for quantum theory with
a simple and direct physical meaning, like the ones of special relativity or
thermodynamics, and it articulates a strong connection between physics and
information.Comment: Published version - 6 pages, 3 appendices, 3 figure
A Comparison of Slat Floors, Litter Floors and Cages for Laying Hens
Commercial hybrid pullets were distributed in 3 different buildings at 20 weeks of age and fed similar diets. Twelve slat floor pens in a building referred to as the environment house and 2 litter floor pens in a building referred to as the brooder house each received 140 pullets (1 bird/sq. ft.)- Six pullets were placed in each of 32 cages in a cage layer house
Effects of High Charge Densities in Multi-GEM Detectors
A comprehensive study, supported by systematic measurements and numerical
computations, of the intrinsic limits of multi-GEM detectors when exposed to
very high particle fluxes or operated at very large gains is presented. The
observed variations of the gain, of the ion back-flow, and of the pulse height
spectra are explained in terms of the effects of the spatial distribution of
positive ions and their movement throughout the amplification structure. The
intrinsic dynamic character of the processes involved imposes the use of a
non-standard simulation tool for the interpretation of the measurements.
Computations done with a Finite Element Analysis software reproduce the
observed behaviour of the detector. The impact of this detailed description of
the detector in extreme conditions is multiple: it clarifies some detector
behaviours already observed, it helps in defining intrinsic limits of the GEM
technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu
Novel phylogenetic algorithm to monitor human tropism in Egyptian H5N1-HPAIV reveals evolution toward efficient human-to-human transmission
Years of endemic infections with highly pathogenic avian influenza (HPAI) A subtype H5N1 virus in poultry and high numbers of infections in humans provide ample opportunity in Egypt for H5N1-HPAIV to develop pandemic potential. In an effort to better understand the viral determinants that facilitate human infections of the Egyptian H5N1-HPAIVvirus, we developed a new phylogenetic algorithm based on a new distance measure derived from the informational spectrum method (ISM). This new approach, which describes functional aspects of the evolution of the hemagglutinin subunit 1 (HA1), revealed a growing group G2 of H5N1-HPAIV in Egypt after 2009 that acquired new informational spectrum (IS) properties suggestive of an increased human tropism and pandemic potential. While in 2006 all viruses in Egypt belonged to the G1 group, by 2011 these viruses were virtually replaced by G2 viruses. All of the G2 viruses displayed four characteristic mutations (D43N, S120(D,N), (S,L)129Δ and I151T), three of which were previously reported to increase binding to the human receptor. Already in 2006–2008 G2 viruses were significantly (p<0.02) more often found in humans than expected from their overall prevalence and this further increased in 2009–2011 (p<0.007). Our approach also identified viruses that acquired additional mutations that we predict to further enhance their human tropism. The extensive evolution of Egyptian H5N1-HPAIV towards a preferential human tropism underlines an urgent need to closely monitor these viruses with respect to molecular determinants of virulence
NaV2O4: a Quasi-1D Metallic Antiferromagnet with Half-Metallic Chains
NaV2O4 crystals were grown under high pressure using a NaCl flux, and the
crystals were characterized with X-ray diffraction, electrical resistivity,
heat capacity, and magnetization. The structure of NaV2O4 consists of double
chains of edge-sharing VO6 octahedra. The resistivity is highly anisotropic,
with the resistivity perpendicular to the chains more than 20 times greater
than that parallel to the chains. Magnetically, the intrachain interactions are
ferromagnetic and the interchain interactions are antiferromagnetic; 3D
antiferromagnetic order is established at 140 K. First principles electronic
structure calculations indicate that the chains are half metallic.
Interestingly, the case of NaV2O4 seems to be a quasi-1D analogue of what was
found for half-metallic materials.Comment: 14 pages, including 4 figures and 1 table, accepted for publication
in PR
Adaptation Reduces Variability of the Neuronal Population Code
Sequences of events in noise-driven excitable systems with slow variables
often show serial correlations among their intervals of events. Here, we employ
a master equation for general non-renewal processes to calculate the interval
and count statistics of superimposed processes governed by a slow adaptation
variable. For an ensemble of spike-frequency adapting neurons this results in
the regularization of the population activity and an enhanced post-synaptic
signal decoding. We confirm our theoretical results in a population of cortical
neurons.Comment: 4 pages, 2 figure
Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors
Graphene is a single layer of carbon atoms arranged in a honeycomb lattice
with remarkable mechanical and electrical properties. Regarded as the thinnest
and narrowest conductive mesh, it has drastically different transmission
behaviours when bombarded with electrons and ions in vacuum. This property, if
confirmed in gas, may be a definitive solution for the ion back-flow problem in
gaseous detectors. In order to ascertain this aspect, graphene layers of
dimensions of about 2x2cm, grown on a copper substrate, are transferred
onto a flat metal surface with holes, so that the graphene layer is freely
suspended. The graphene and the support are installed into a gaseous detector
equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency
properties to electrons and ions are studied in gas as a function of the
electric fields. The techniques to produce the graphene samples are described,
and we report on preliminary tests of graphene-coated GEMs.Comment: 4pages, 3figures, 13th Pisa Meeting on Advanced Detector
- …