41,733 research outputs found
Aether drift and the isotropy of the universe: a measurement of anisotropies in the primordial black-body radiation
This experiment detected and mapped large-angular-scale anisotropies in the 3 K primordial black-body radiation with a sensitivity of 2x.0001k and an angular resolution of about 10 degs. It measured the motion of the Earth with respect to the distant matter of the Universe (Aether Drift), and probed the homogeneity and isotropy of the Universe (the Cosmological Principle). The experiment used two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth Survey Aircraft (U-2), and operated successfully in a series of flights
The glacial cycles and cosmic rays
The cause of the glacial cycles remains a mystery. The origin is widely
accepted to be astronomical since paleoclimatic archives contain strong
spectral components that match the frequencies of Earth's orbital modulation.
Milankovitch insolation theory contains similar frequencies and has become
established as the standard model of the glacial cycles. However, high
precision paleoclimatic data have revealed serious discrepancies with the
Milankovitch model that fundamentally challenge its validity and re-open the
question of what causes the glacial cycles. We propose here that the ice ages
are initially driven not by insolation cycles but by cosmic ray changes,
probably through their effect on clouds. This conclusion is based on a wide
range of evidence, including results presented here on speleothem growth in
caves in Austria and Oman, and on a record of cosmic ray flux over the past 220
kyr obtained from the 10Be composition of deep-ocean sediments
Injection molding of silicon carbide capable of being sintered without pressure
The most suitable SiC mass for injection molding of SiC articles (for subsequent pressureless sintering) consisted of beta SiC 84, a wax mixture 8, and polyethylene or polystyrene 8 parts. The most effective method for adding the binders was by dissolving them in a solvent and subsequent evaporation. The sequence of component addition was significant, and all parameters were optimized together rather than individually
Intentionality versus Constructive Empiricism
By focussing on the intentional character of observation in science, we argue that Constructive Empiricism â B.C. van Fraassenâs much debated and explored view of science â is inconsistent. We then argue there are at least two ways out of our Inconsistency Argument, one of which is more easily to square with Constructive Empiricism than the other
Analysis of distortion data from TF30-P-3 mixed compression inlet test
A program was conducted to reduce and analyze inlet and engine data obtained during testing of a TF30-P-3 engine operating behind a mixed compression inlet. Previously developed distortion analysis techniques were applied to the data to assist in the development of a new distortion methodology. Instantaneous distortion techniques were refined as part of the distortion methodology development. A technique for estimating maximum levels of instantaneous distortion from steady state and average turbulence data was also developed as part of the program
The contrast of magnetic elements in synthetic CH- and CN-band images of solar magnetoconvection
We present a comparative study of the intensity contrast in synthetic CH-band
and violet CN-band filtergrams computed from a high-resolution simulation of
solar magnetoconvection. The underlying simulation has an average vertical
magnetic field of 250 G with kG fields concentrated in its intergranular lanes,
and is representative of a plage region. To simulate filtergrams typically
obtained in CH- and CN-band observations we computed spatially resolved spectra
in both bands and integrated these spectra over 1 nm FWHM filter functions
centred at 430.5 nm and 388.3 nm, respectively. We find that the average
contrast of magnetic bright points in the simulated filtergrams is lower in the
CN-band by a factor of 0.96. This result strongly contradicts earlier
semi-empirical modeling and recent observations, which both etimated that the
bright-point contrast in the CN-band is \emph{higher} by a factor of 1.4. We
argue that the near equality of the bright-point contrast in the two bands in
the present simulation is a natural consequence of the mechanism that causes
magnetic flux elements to be particularly bright in the CN and CH filtergrams,
namely the partial evacuation of these elements and the concomitant weakening
of molecular spectral lines in the filter passbands. We find that the RMS
intensity contrast in the whole field-of-view of the filtergrams is 20.5% in
the G band and 22.0% in the CN band and conclude that this slight difference in
contrast is caused by the shorter wavelength of the latter. Both the
bright-point and RMS intensity contrast in the CN band are sensitive to the
precise choice of the central wavelength of the filter.Comment: 24 pages, 9 figures, submitted to Ap
Willingness-to-Pay for Improved Air Quality in Hamilton-Wentworth: A Choice Experiment
Prepared for Hamilton-Wentworth Air Quality Initiative pursuant to a memorandum of understanding among McMaster University, the Ontario Ministry of Environment and Energy and the Regional Municipality of Hamilton-Wentworth, dated November 5, 1996.
The size distribution of magnetic bright points derived from Hinode/SOT observations
Context. Magnetic Bright Points (MBPs) are small-scale magnetic features in
the solar photosphere. They may be a possible source of coronal heating by
rapid footpoint motions that cause magnetohydrodynamical waves. The number and
size distribution are of vital importance in estimating the small
scale-magnetic-field energy. Aims. The size distribution of MBPs is derived for
G-band images acquired by the Hinode/SOT instrument. Methods. For
identification purposes, a new automated segmentation and identification
algorithm was developed. Results. For a sampling of 0.108 arcsec/pixel, we
derived a mean diameter of (218 +- 48) km for the MBPs. For the full resolved
data set with a sampling of 0.054 arcsec/pixel, the size distribution shifted
to a mean diameter of (166 +- 31) km. The determined diameters are consistent
with earlier published values. The shift is most probably due to the different
spatial sampling. Conclusions. We conclude that the smallest magnetic elements
in the solar photosphere cannot yet be resolved by G-band observations. The
influence of discretisation effects (sampling) has also not yet been
investigated sufficiently.Comment: Astronomy and Astrophysics, Volume 498, Issue 1, 2009, pp.289-29
Heterogeneity, Communication, Coordination and Voluntary Provision of a Public Good
The results of twenty-four laboratory sessions are evaluated with respect to the role of alternative definitions of equity when communication is introduced into an environment in which voluntary contributions determine the level of public good provision to small groups of individuals. Individuals experience both non-communication and communication treatments. Additional treatments include the extent to which subjects have information about othersâ payoffs from (preferences for) the consumption of public goods and about othersâ incomes and payoff functions (preferences). With communication, participants in incomplete information environments are less able to coordinate their contributions while those in complete information environments succeed more often. Under complex heterogeneity payoff distributions widen with the introduction of communication. The data do not support the emergence of a particular pattern of coordination across all treatments.
- âŠ