146 research outputs found

    Raytheon -- Design of Boat Hull Segments Using Additive Manufacturing

    Get PDF
    The purpose of this project was to assess the effectiveness of designing and producing a boat hull in segments, using additive manufacturing. The group accomplished this, by completing an in-depth research into additive manufacturing processes and 3 Dimensional (3D) printing techniques. The design was to be dimensionally stable, and have a process that strives for easy repeatability and reproducibility. Evaluated was the V-Bottom, Round Bottom and Flat Bottom style. Through the use of modeling the different hull styles in SolidWorks it was determined the Flat bottom was more stable and reproducible. The hull was broken into four segments and used finger joints to align and join the segments. The 3D printer used was capable of printing Acrylonitrile styrene acrylate (ASA), Polyethylene Terephthalate (PETG), Acrylonitrile Butadiene Styrene (ABS), Nylon, Carbon Fiber and Polycarbonate. After printing with all these materials it was determined ASA would be the best fit for additive manufacturing of a boat hull. After the segments were printed and joined together with adhesives a waterproof coating was applied. The assembled hull was subjected to a series of strength tests to determine its effectiveness in this application. The finished product rode smoothly in water, was weather resistant, safe, buoyant, and reliable to manufacture

    Designing and optimizing a micromanipulator-controlled surgical tool for reproducible nerve crush injuries in mice

    Get PDF
    Poster presented at the 2017 Health Sciences Research Day which was organized and sponsored by the University of Missouri School of Medicine Research Council and held on November 9, 2017.Introduction: Recurrent laryngeal nerve (RLN) injury, even if temporary, is a devastating complication of anterior cervical surgical procedures, resulting in debilitating dysphonia and dysphagia. During surgery, injury can be imparted by stretching, crushing, cauterizing, and/or transecting the laryngeal nerves. The injury can be temporary or permanent, depending on the severity and mechanism of insult. Treatment of the injury is generally palliative in nature and includes feeding tubes, voice and swallowing therapy, and diet modifications. The underlying pathophysiology of RLN is not completely understood. To effectively investigate various treatment strategies in mouse models, we need to improve the current translational animal model by standardizing the widely-used manual nerve crush techniques that apply variable force and may unintentionally add traction injuries. To control for these potential confounds, we are developing a micromanipulator-controlled surgical tool that (1) reliably applies a calibrated crush force injury, and (2) minimizes secondary injuries, such as traction, induced by manual methods

    First Smart Spaces

    Get PDF
    This document describes the Gloss software currently implemented. The description of the Gloss demonstrator for multi-surface interaction can be found in D17. The ongoing integration activity for the work described in D17 and D8 constitutes our development of infrastructure for a first smart space. In this report, the focus is on infrastructure to support the implementation of location aware services. A local architecture provides a framework for constructing Gloss applications, termed assemblies, that run on individual physical nodes. A global architecture defines an overlay network for linking individual assemblies. Both local and global architectures are under active development

    Power Electronics High Performance Air-Cooled Heat Sinks IntegratingGraphite Based Materials

    Get PDF
    The thermal management of the power electronics cooling in the aircraft is getting more attention in the recent years due to the progressive implementation of electrical systems, especially in the framework of the more electrical aircraft, one of Clean Sky framework research activities to allow Europe to lead the transition to more environmental friendly aircraft in the future. The reference innovative trend in the cooling of power electronics and other semiconductor devices has been to migrate from air cooled solutions to liquid cooled or two-phase flow solutions, as these being able to reach higher levels of heat transfer density and keep electronics temperatures within the required limits. However, in the context of new wide-bandgap semiconductor materials (GaN, SiC) that withstand higher operating temperatures with reduced losses, the use of air cooling is attracting again interest, as a potential candidate to reduce the complexity of thermal management systems, and indirectly their weight and cost. In this regard, the consortium of the Clean Sky 2 project ICOPE has been working in the development of new concepts of air cooled heat sinks that incorporate advanced thermal materials such as Annealed Pyrolytic Graphite (APG) and Metal Matrix Composites (MMC) (Aluminium Graphite (ALG)).The project has evolved from pre-design steps to identify potential design candidates towards a final design with the support of CFD simulations and engineering assessment. Different versions of heat sink incorporating different combinations of the referred materials have been manufactured and successfully tested. A first loop of prototypes, called Stage A, implement APG, while a second loop of prototypes (Stage B) integrate APG and MMC in different interactions. This paper is conceived as a summary of the project developments and results at heat sink level, presenting the overall concept, the materials involved, and the experimental and numerical results obtained, which achieve the expected performances in terms of heat transfer, pressure drop and weight. The outcome of these results can suggest to reconsider the power electronics cooling design in other applications outside the aircraft sector, for example within Power Conversion applications or automotive field

    Adaptive Manufacturing for Healthcare During the COVID-19 Emergency and Beyond

    Get PDF
    During the COVID-19 pandemic, global health services have faced unprecedented demands. Many key workers in health and social care have experienced crippling shortages of personal protective equipment, and clinical engineers in hospitals have been severely stretched due to insufficient supplies of medical devices and equipment. Many engineers who normally work in other sectors have been redeployed to address the crisis, and they have rapidly improvised solutions to some of the challenges that emerged, using a combination of low-tech and cutting-edge methods. Much publicity has been given to efforts to design new ventilator systems and the production of 3D-printed face shields, but many other devices and systems have been developed or explored. This paper presents a description of efforts to reverse engineer or redesign critical parts, specifically a manifold for an anaesthesia station, a leak port, plasticware for COVID-19 testing, and a syringe pump lock box. The insights obtained from these projects were used to develop a product lifecycle management system based on Aras Innovator, which could with further work be deployed to facilitate future rapid response manufacturing of bespoke hardware for healthcare. The lessons learned could inform plans to exploit distributed manufacturing to secure back-up supply chains for future emergency situations. If applied generally, the concept of distributed manufacturing could give rise to “21st century cottage industries” or “nanofactories,” where high-tech goods are produced locally in small batches

    Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047

    DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons

    Get PDF
    The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5′ CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts—defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)—were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase
    • …
    corecore