15 research outputs found

    Collective bargaining as a two-level game: Direct learner-expert interactions

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.In this article, the authors introduce a new feature to model the collective bargaining process: a two-level game setting with direct learner-expert interaction. In the simulation ZUG UM ZUG 2015, participants form union and management negotiation teams to negotiate with each other (first level) and with a management or union “tariff commission,” which has to approve proposed contracts (second level). To increase the degree of realism and the teaching effectiveness of the simulation, real-world negotiation experts negotiate in tariff commissions directly with participants. The authors also introduce a negotiation process to facilitate an efficient knowledge transfer from experts to learners

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Zug um Zug 2015: Collective Bargaining as a Two-Level Game

    No full text
    In this article we introduce a new feature to model collective bargaining processes: a two-level game setting with direct student-expert interaction. In the simulation Zug um Zug 2015 participants form union and management negotiation teams which negotiate with each other (first level) and with a management or union “tariff commission” which has to approve the proposed contracts (second level). Real-world negotiation experts constitute the tariff commissions to increase the degree of realism and the teaching effectiveness of the simulation. We introduce a negotiation process to facilitate an efficient knowledge transfer from experts to students

    Predicting Glioblastoma Cellular Motility from In Vivo MRI with a Radiomics Based Regression Model

    No full text
    Characterizing the motile properties of glioblastoma tumor cells could provide a useful way to predict the spread of tumors and to tailor the therapeutic approach. Radiomics has emerged as a diagnostic tool in the classification of tumor grade, stage, and prognosis. The purpose of this work is to examine the potential of radiomics to predict the motility of glioblastoma cells. Tissue specimens were obtained from 31 patients undergoing surgical resection of glioblastoma. Mean tumor cell motility was calculated from time-lapse videos of specimen cells. Manual segmentation was used to define the border of the enhancing tumor T1-weighted MR images, and 107 radiomics features were extracted from the normalized image volumes. Model parameter coefficients were estimated using the adaptive lasso technique validated with leave-one-out cross validation (LOOCV) and permutation tests. The R-squared value for the predictive model was 0.60 with p-values for each individual parameter estimate less than 0.0001. Permutation test models trained with scrambled motility failed to produce a model that out-performed the model trained on the true data. The results of this work suggest that it is possible for a quantitative MRI feature-based regression model to non-invasively predict the cellular motility of glioblastomas

    A radiomics-based model for predicting local control of resected brain metastases receiving adjuvant SRS

    No full text
    Purpose: Adjuvant radiosurgery to the cavities of surgically resected brain metastases provides excellent local tumor control while reducing the risk of deleterious cognitive decline associated with whole brain radiotherapy. A subset of these patients, however, will develop disease recurrence following radiosurgery. In this study, we sought to assess the predictive capability of radiomic-based models, as compared with standard clinical features, in predicting local tumor control. Methods: We performed a retrospective chart review of patients treated with adjuvant radiosurgery for resected brain metastases at the “Institution” from 2009 to 2019. Shape, intensity and texture based radiomics features of the cavities were extracted from the pre-radiosurgery treatment planning MRI scans and trained using a gradient boosting technique with K-fold cross validation. Results: In total, 71 cavities from 67 treated patients were included for analysis. The 6 and 12 month local control estimates were 86% and 76%, respectively. The 6 and 12 month overall survival was 78% and 55%, respectively. Thirty-six patients developed intracranial failures outside of the surgical cavity. The predictive model for local control trained on imaging features from the whole cavity achieved an area-under-the-curve (AUC) of 0.73 on the validation set versus an AUC of 0.40 for the clinical features. Conclusions: Here we report a single institutional experience using radiomic-based predictive modeling of local tumor control following adjuvant Gamma Knife radiosurgery for resected brain metastases. We found the radiomics features to provide more robust predictive models of local control rates versus clinical features alone. Such techniques could potentially prove useful in the clinical setting and warrant further investigation

    Protein prediction for trait mapping in diverse populations.

    Get PDF
    Genetically regulated gene expression has helped elucidate the biological mechanisms underlying complex traits. Improved high-throughput technology allows similar interrogation of the genetically regulated proteome for understanding complex trait mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot study, which comprises data from Multi-Ethnic Study of Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for genetically regulated proteome-wide association studies (PWAS) in diverse populations. We built predictive models for protein abundances using data collected in TOPMed MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared predictive models built via elastic net regression to models integrating posterior inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to investigate the transferability of predictive models across ancestries, we built protein prediction models in all four of the TOPMed MESA populations, African American (n = 183), Chinese (n = 71), European (n = 416), and Hispanic/Latino (n = 301), as well as in all populations combined. As expected, fine-mapping produced more significant protein prediction models, especially in African ancestries populations, potentially increasing opportunity for discovery. When we tested our TOPMed MESA models in the independent European INTERVAL study, fine-mapping improved cross-ancestries prediction for some proteins. Using GWAS summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study, which comprises ∌50,000 Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans, we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait associations were discovered, colocalized, and replicated in large independent GWAS using proteome prediction model training populations with similar ancestries to PAGE. At current training population sample sizes, performance between baseline and fine-mapped protein prediction models in PWAS was similar, highlighting the utility of elastic net. Our predictive models in diverse populations are publicly available for use in proteome mapping methods at https://doi.org/10.5281/zenodo.4837327
    corecore