17 research outputs found

    Neural Attention and Evaluative Responses to Gay and Lesbian Couples

    Get PDF
    The goal of the current study was to examine whether differential neural attentional capture and evaluative responses for out-group homosexual relative to in-group heterosexual targets occur during social categorization. To this end, 36 heterosexual participants were presented with pictures of heterosexual and homosexual couples in a picture-viewing task that was designed to assess implicit levels of discomfort toward homosexuality and explicit evaluations of pleasantness toward the images. Neural activity in the form of electroencephalogram was recorded during the presentation of the pictures, and event-related potentials resulting from these stimuli were examined. Participants also completed questionnaires that assessed the degree to which they socialized with gays and lesbians. Results demonstrated that relative to straight couples, larger P2 amplitude was observed in response to gay but not to lesbian couples. However, both gay and lesbian couples yielded a larger late positive potential than straight couples. Moreover, the degree to which participants differentially directed early neural attention to out-group lesbian versus in-group straight couples was related to their familiarity with homosexual individuals. This work, which provides an initial understanding of the neural underpinnings of attention toward homosexual couples, suggests that differences in the processing of sexual orientation can occur as early as 200 ms and may be moderated by familiarity

    Evaluating the Shinumo-Sespe drainage connection: Arguments against the “old” (70–17 Ma) Grand Canyon models for Colorado Plateau drainage evolution

    Get PDF
    The provocative hypothesis that the Shinumo Sandstone in the depths of Grand Canyon was the source for clasts of orthoquartzite in conglomerate of the Sespe Formation of coastal California, if verified, would indicate that a major river system flowed southwest from the Colorado Plateau to the Pacific Ocean prior to opening of the Gulf of California, and would imply that Grand Canyon had been carved to within a few hundred meters of its modern depth at the time of this drainage connection. The proposed Eocene Shinumo-Sespe connection, however, is not supported by detrital zircon nor paleomagnetic-inclination data and is refuted by thermochronology that shows that the Shinumo Sandstone of eastern Grand Canyon was \u3e60 °C (∼1.8 km deep) and hence not incised at this time. A proposed 20 Ma (Miocene) Shinumo-Sespe drainage connection based on clasts in the Sespe Formation is also refuted. We point out numerous caveats and non-unique interpretations of paleomagnetic data from clasts. Further, our detrital zircon analysis requires diverse sources for Sespe clasts, with better statistical matches for the four “most-Shinumo-like” Sespe clasts with quartzites of the Big Bear Group and Ontario Ridge metasedimentary succession of the Transverse Ranges, Horse Thief Springs Formation from Death Valley, and Troy Quartzite of central Arizona. Diverse thermochronologic and geologic data also refute a Miocene river pathway through western Grand Canyon and Grand Wash trough. Thus, Sespe clasts do not require a drainage connection from Grand Canyon or the Colorado Plateau and provide no constraints for the history of carving of Grand Canyon. Instead, abundant evidence refutes the “old” (70–17 Ma) Grand Canyon models and supports a \u3c6 Ma Grand Canyon

    Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse

    Get PDF
    Alterations in peripheral and central indices of serotonin (5-hydroxytryptamine, 5-HT) production, storage and signaling have long been associated with autism. The 5-HT transporter gene (HTT, SERT, SLC6A4) has received considerable attention as a potential risk locus for autism-spectrum disorders, as well as disorders with overlapping symptoms, including obsessive-compulsive disorder (OCD). Here, we review our efforts to characterize rare, nonsynonymous polymorphisms in SERT derived from multiplex pedigrees carrying diagnoses of autism and OCD and present the initial stages of our effort to model one of these variants, Gly56Ala, in vivo. We generated a targeting vector to produce the Gly56Ala substitution in the Slc6a4 locus by homologous recombination. Following removal of a neomycin resistance selection cassette, animals exhibiting germline transmission of the Ala56 variant were bred to establish a breeding colony on a 129S6 background, suitable for initial evaluation of biochemical, physiological and behavioral alterations relative to SERT Gly56 (wildtype) animals. SERT Ala56 mice were achieved and exhibit a normal pattern of transmission. The initial growth and gross morphology of these animals is comparable to wildtype littermate controls. The SERT Ala56 variant can be propagated in 129S6 mice without apparent disruption of fertility and growth. We discuss both the opportunities and challenges that await the physiological/behavioral analysis of Gly56Ala transgenic mice, with particular reference to modeling autism-associated traits
    corecore