39 research outputs found

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    BACKGROUND AIMS: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. METHODS: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response ("responders"), 16 PBC patients with inadequate UDCA response ("nonresponders"), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes ("modules") associated with response status and the most highly connected genes ("hub genes") within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation ("latent factors") across all peripheral blood mononuclear cell subsets. RESULTS: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q<0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. CONCLUSIONS: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium

    Implementation and evaluation of a multi-level mental health promotion intervention for the workplace (MENTUPP): study protocol for a cluster randomised controlled trial

    Get PDF
    Background Well-organised and managed workplaces can be a source of wellbeing. The construction, healthcare and information and communication technology sectors are characterised by work-related stressors (e.g. high workloads, tight deadlines) which are associated with poorer mental health and wellbeing. The MENTUPP intervention is a flexibly delivered, multi-level approach to supporting small- and medium-sized enterprises (SMEs) in creating mentally healthy workplaces. The online intervention is tailored to each sector and designed to support employees and leaders dealing with mental health difficulties (e.g. stress), clinical level anxiety and depression, and combatting mental health-related stigma. This paper presents the protocol for the cluster randomised controlled trial (cRCT) of the MENTUPP intervention in eight European countries and Australia. Methods Each intervention country will aim to recruit at least two SMEs in each of the three sectors. The design of the cRCT is based on the experiences of a pilot study and guided by a Theory of Change process that describes how the intervention is assumed to work. SMEs will be randomly assigned to the intervention or control conditions. The aim of the cRCT is to assess whether the MENTUPP intervention is effective in improving mental health and wellbeing (primary outcome) and reducing stigma, depression and suicidal behaviour (secondary outcome) in employees. The study will also involve a process and economic evaluation. Conclusions At present, there is no known multi-level, tailored, flexible and accessible workplace-based intervention for the prevention of non-clinical and clinical symptoms of depression, anxiety and burnout, and the promotion of mental wellbeing. The results of this study will provide a comprehensive overview of the implementation and effectiveness of such an intervention in a variety of contexts, languages and cultures leading to the overall goal of delivering an evidence-based intervention for mental health in the workplace

    Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa

    Get PDF
    Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Human scavenger receptor class B, type II (SR-BII) and cellular cholesterol efflux

    Get PDF
    A key feature of atherosclerotic lesions is the presence of cholesteryl ester (CE)-engorged macrophages within the arterial intima. Cholesterol mobilisation from intracellular stores involves high-density lipoprotein (HDL) binding to an unknown cell surface receptor, activation of signalling pathways, and translocation of free cholesterol to the plasma membrane for efflux. The scavenger receptor, class B (SR-B) gene encodes for two different splice variants (types I and II), which have identical extracellular regions that bind HDL but C-terminal cytoplasmic tails that differ. I identified a number of putative signalling motifs in the C-terminus of SR-BII, which are absent from SR-BI, and hypothesised that: upon HDL stimulation of SR-BII, its C-terminal cytoplasmic tail interacts with a signalling molecule to activate the CE mobilisation pathway. Pull-down assays to screen potential binding proteins revealed that biotin-tagged cytoplasmic SR-BII interacts with the Src Homology 3 domain of phospholipase C-γ1, in an isoform-specific manner. However, I failed to detect this interaction within more physiological, cellular environments. Full-length SR-BI or SR-BII sequences were over-expressed in Chinese hamster ovary cells (CHO-SR-BI/II), and caveolae (cholesterol-rich microdomains of the plasma membrane) were isolated from cell lysates using sucrose density gradient ultracentrifugation. Human SR-BII was detected in this membrane fraction, while co-immunoprecipitation with caveolin-1 confirmed its true caveolar localisation. This finding implicates SR-BII in both signalling and cholesterol flux; two functions associated with caveolae. Following the generation of an isoform-specific human SR-BII antiserum, cell surface expression of SR-BII protein in THP-1 monocytes and macrophages was revealed. To investigate the role of this isoform in CE mobilisation, recombinant CHO-SR-BII cells were labelled with 3H-oleic acid and reductions of cellular cholesteryl oleate were monitored during HDL incubation. Over-expression of SR-BII, however, failed to promote the release of stored CE pools. In contrast, studies comparing HDL-stimulated efflux of free 3H-cholesterol from CHO-SR-BI/II cells showed that SR-BII is significantly better than SR-BI at cellular cholesterol efflux. I conclude that SR-BII has an important role in cellular cholesterol homeostasis and reverse cholesterol transport
    corecore