78 research outputs found

    Target product profiles for protecting against outdoor malaria transmission.

    Get PDF
    BACKGROUND\ud \ud Long-lasting insecticidal nets (LLINs) and indoor residual sprays (IRS) have decimated malaria transmission by killing indoor-feeding mosquitoes. However, complete elimination of malaria transmission with these proven methods is confounded by vectors that evade pesticide contact by feeding outdoors.\ud \ud METHODS\ud \ud For any assumed level of indoor coverage and personal protective efficacy with insecticidal products, process-explicit malaria transmission models suggest that insecticides that repel mosquitoes will achieve less impact upon transmission than those that kill them outright. Here such models are extended to explore how outdoor use of products containing either contact toxins or spatial repellents might augment or attenuate impact of high indoor coverage of LLINs relying primarily upon contact toxicity.\ud \ud RESULTS\ud \ud LLIN impact could be dramatically enhanced by high coverage with spatial repellents conferring near-complete personal protection, but only if combined indoor use of both measures can be avoided where vectors persist that prefer feeding indoors upon humans. While very high levels of coverage and efficacy will be required for spatial repellents to substantially augment the impact of LLINs or IRS, these ambitious targets may well be at least as practically achievable as the lower requirements for equivalent impact using contact insecticides.\ud \ud CONCLUSIONS\ud \ud Vapour-phase repellents may be more acceptable, practical and effective than contact insecticides for preventing outdoor malaria transmission because they need not be applied to skin or clothing and may protect multiple occupants of spaces outside of treatable structures such as nets or houses

    A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts

    Get PDF
    Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    A New Classification System for the Actions of IRS Chemicals Traditionally Used For Malaria Control

    Get PDF
    Knowledge of how mosquitoes respond to insecticides is of paramount importance in understanding how an insecticide functions to prevent disease transmission. A suite of laboratory assays was used to quantitatively characterize mosquito responses to toxic, contact irritant, and non-contact spatial repellent actions of standard insecticides. Highly replicated tests of these compounds over a range of concentrations proved that all were toxic, some were contact irritants, and even fewer were non-contact repellents. Of many chemicals tested, three were selected for testing in experimental huts to confirm that chemical actions documented in laboratory tests are also expressed in the field. The laboratory tests showed the primary action of DDT is repellent, alphacypermethrin is irritant, and dieldrin is only toxic. These tests were followed with hut studies in Thailand against marked-released populations. DDT exhibited a highly protective level of repellency that kept mosquitoes outside of huts. Alphacypermethrin did not keep mosquitoes out, but its strong irritant action caused them to prematurely exit the treated house. Dieldrin was highly toxic but showed no irritant or repellent action. Based on the combination of laboratory and confirmatory field data, we propose a new paradigm for classifying chemicals used for vector control according to how the chemicals actually function to prevent disease transmission inside houses. The new classification scheme will characterize chemicals on the basis of spatial repellent, contact irritant and toxic actions

    Identifying the most productive breeding sites for malaria mosquitoes in The Gambia

    Get PDF
    BACKGROUND: Ideally larval control activities should be targeted at sites that generate the most adult vectors, thereby reducing operational costs. Despite the plethora of potential mosquito breeding sites found in the floodplains of the Gambia River, about 150 km from its mouth, during the rainy season, only a small proportion are colonized by anophelines on any day. This study aimed to determine the characteristics of larval habitats most frequently and most densely populated by anopheline larvae and to estimate the numbers of adults produced in different habitats. METHODS: A case-control design was used to identify characteristics of sites with or without mosquitoes. Sites were surveyed for their physical water properties and invertebrate fauna. The characteristics of 83 sites with anopheline larvae (cases) and 75 sites without (controls) were collected between June and November 2005. Weekly adult productivity was estimated with emergence traps in water-bodies commonly containing larvae. RESULTS: The presence of anopheline larvae was associated with high invertebrate diversity (Odds Ratio, OR 11.69, 95% CI 5.61-24.34, p < 0.001), the presence of emergent vegetation (OR 2.83, 95% CI 1.35-5.95, p = 0.006), and algae (at borderline significance; OR 1.87, 95% CI 0.96-3.618, p = 0.065). The density of larvae was reduced in sites that were larger than 100 m in perimeter (OR 0.151; 95% CI 0.060-0.381, p < 0.001), where water was tidal (OR 0.232; 95% CI 0.101-0.533, p = 0.001), vegetation shaded over 25% of the habitat (OR 0.352; 95% CI 0.136-0.911, p = 0.031) and water conductivity was above 2,000 muS/cm (OR 0.458; 95% CI 0.220-0.990, p = 0.048). Pools produced the highest numbers of Anopheles gambiae adults compared with rice fields, floodwater areas close to the edge of the floodplain or close to the river, and stream fringes. Pools were characterized by high water temperature and turbidity, low conductivity, increased presence of algae, and absence of tidal water. CONCLUSION: There are few breeding sites that produce a high number of adult vectors in the middle reaches of the river in The Gambia, whereas those with low productivity are larger in area and can be found throughout the rainy season. Even though risk factors could be identified for the presence and density of larvae and productivity of habitats, the results indicate that anti-larval interventions in this area of The Gambia cannot be targeted in space or time during the rainy season

    Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.

    Get PDF
    The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures

    Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill?

    Get PDF
    BACKGROUND\ud \ud The most common pesticide products for controlling malaria-transmitting mosquitoes combine two distinct modes of action: 1) conventional insecticidal activity which kills mosquitoes exposed to the pesticide and 2) deterrence of mosquitoes away from protected humans. While deterrence enhances personal or household protection of long-lasting insecticidal nets and indoor residual sprays, it may also attenuate or even reverse communal protection if it diverts mosquitoes to non-users rather than killing them outright.\ud \ud METHODS\ud \ud A process-explicit model of malaria transmission is described which captures the sequential interaction between deterrent and toxic actions of vector control pesticides and accounts for the distinctive impacts of toxic activities which kill mosquitoes before or after they have fed upon the occupant of a covered house or sleeping space.\ud \ud RESULTS\ud \ud Increasing deterrency increases personal protection but consistently reduces communal protection because deterrent sub-lethal exposure inevitably reduces the proportion subsequently exposed to higher lethal doses. If the high coverage targets of the World Health Organization are achieved, purely toxic products with no deterrence are predicted to generally provide superior protection to non-users and even users, especially where vectors feed exclusively on humans and a substantial amount of transmission occurs outdoors. Remarkably, this is even the case if that product confers no personal protection and only kills mosquitoes after they have fed.\ud \ud CONCLUSIONS\ud \ud Products with purely mosquito-toxic profiles may, therefore, be preferable for programmes with universal coverage targets, rather than those with equivalent toxicity but which also have higher deterrence. However, if purely mosquito-toxic products confer little personal protection because they do not deter mosquitoes and only kill them after they have fed, then they will require aggressive "catch up" campaigns, with behaviour change communication strategies that emphasize the communal nature of protection, to achieve high coverage rapidly

    Semi-natural habitats support biological control, pollination and soil conservation in Europe:A review

    Get PDF
    Semi-natural habitats are integral to most agricultural areas and have the potential to support ecosystem services, especially biological control and pollination by supplying resources for the invertebrates providing these services and for soil conservation by preventing erosion and run-off. Some habitats are supported through agri-environment scheme funding in the European Union, but their value for ecosystem service delivery has been questioned. An improved understanding of previous research approaches and outcomes will contribute to the development of more sustainable farming systems, improve experimental designs and highlight knowledge gaps especially for funders and researchers. Here we compiled a systematic map to allow for the first time a review of the quantity of evidence collected in Europe that semi-natural habitats support biological control, pollination and soil conservation. A literature search selected 2252 publications, and, following review, 270 met the inclusion criteria and were entered into the database. Most publications were of pest control (143 publications) with less on pollination (78 publications) or soil-related aspects (31). For pest control and pollination, most publications reported a positive effect of semi-natural habitats. There were weaknesses in the evidence base though because of bias in study location and the crops, whilst metrics (e.g. yield) valued by end users were seldom measured. Hedgerows, woodland and grassland were the most heavily investigated semi-natural habitats, and the wider landscape composition was often considered. Study designs varied considerably yet only 24% included controls or involved manipulation of semi-natural habitats. Service providers were commonly measured and used as a surrogate for ecosystem service delivery. Key messages for policymakers and funders are that they should encourage research that includes more metrics required by end users, be prepared to fund longer-term studies (61% were of only 1-year duration) and investigate the role of soils within semi-natural habitats in delivering ecosystem services

    To bite or not to bite! A questionnaire-based survey assessing why some people are bitten more than others by midges

    Get PDF
    BACKGROUND: The Scottish biting midge, Culicoides impunctatus, responsible for more than 90% of biting attacks on human beings in Scotland, is known to demonstrate a preference for certain human hosts over others. METHODS: In this study we used a questionnaire-based survey to assess the association between people's perception of how badly they get bitten by midges and their demographic, lifestyle and health related characteristics. RESULTS: Most people (85.8%) reported being bitten sometimes, often or always with only 14.2% reporting never being bitten by midges when in Scotland. There was no association between level of bites received and age, smoking, diet, exercise, medication, eating strongly flavoured foods or alcohol consumption. However, there was a strong association between the probability of being bitten and increasing height (in men) and BMI (in women). A large proportion of participants (33.8%) reported experiencing a bad/severe reaction to midge bites while 53.1% reported a minor reaction and 13.1% no reaction at all. Also, women tend to react more than men to midge bites. Additionally, the results indicated that the susceptibility to being bitten by midges is hereditary. CONCLUSIONS: This study suggests that midges prefer to bite men that are tall and women that have a large BMI, and that the tendency for a child to be bitten or not could be inherited from their parent. The study is questionnaire-based; therefore, the interpretation of the results may be limited by the subjectivity of the answers given by the respondents. Although the results are relevant only to the Scottish biting midge, the approach used here could be useful for investigating human-insect interactions for other insects, particularly those which transmit pathogens that cause disease

    Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania

    Get PDF
    BACKGROUND\ud \ud Preventing malaria by controlling mosquitoes in their larval stages requires regular sensitive monitoring of vector populations and intervention coverage. The study assessed the effectiveness of operational, community-based larval habitat surveillance systems within the Urban Malaria Control Programme (UMCP) in urban Dar es Salaam, Tanzania.\ud \ud METHODS\ud \ud Cross-sectional surveys were carried out to assess the ability of community-owned resource persons (CORPs) to detect mosquito breeding sites and larvae in areas with and without larviciding. Potential environmental and programmatic determinants of habitat detection coverage and detection sensitivity of mosquito larvae were recorded during guided walks with 64 different CORPs to assess the accuracy of data each had collected the previous day.\ud \ud RESULTS\ud \ud CORPs reported the presence of 66.2% of all aquatic habitats (1,963/2,965), but only detected Anopheles larvae in 12.6% (29/230) of habitats that contained them. Detection sensitivity was particularly low for late-stage Anopheles (2.7%, 3/111), the most direct programmatic indicator of malaria vector productivity. Whether a CORP found a wet habitat or not was associated with his/her unfamiliarity with the area (Odds Ratio (OR) [95% confidence interval (CI)] = 0.16 [0.130, 0.203], P < 0.001), the habitat type (P < 0.001) or a fence around the compound (OR [95%CI] = 0.50 [0.386, 0.646], P < 0.001). The majority of mosquito larvae (Anophelines 57.8% (133/230) and Culicines 55.9% (461/825) were not reported because their habitats were not found. The only factor affecting detection of Anopheline larvae in habitats that were reported by CORPs was larviciding, which reduced sensitivity (OR [95%CI] = 0.37 [0.142, 0.965], P = 0.042).\ud \ud CONCLUSIONS\ud \ud Accessibility of habitats in urban settings presents a major challenge because the majority of compounds are fenced for security reasons. Furthermore, CORPs under-reported larvae especially where larvicides were applied. This UMCP system for larval surveillance in cities must be urgently revised to improve access to enclosed compounds and the sensitivity with which habitats are searched for larvae
    corecore