87 research outputs found

    Pegylated arginine deiminase synergistically increases the cytotoxicity of gemcitabine in human pancreatic cancer.

    Get PDF
    BackgroundPancreatic ductal adenocarcinoma has proven to be one of the most chemo-resistant among all solid organ malignancies. Several mechanisms of resistance have been described, though few reports of strategies to overcome this chemo-resistance have been successful in restoring sensitivity to the primary chemotherapy (gemcitabine) and enter the clinical treatment arena.MethodsWe examined the ability of cellular arginine depletion through treatment with PEG-ADI to alter in vitro and in vivo cytotoxicity of gemcitabine. The effect on levels of key regulators of gemcitabine efficacy (e.g. RRM2, hENT1, and dCK) were examined.ResultsCombination of PEG-ADI and gemcitabine substantially increases growth arrest, leading to increased tumor response in vivo. PEG-ADI is a strong inhibitor of the gemcitabine-induced overexpression of ribonucleotide reductase subunit M2 (RRM2) levels both in vivo and in vitro, which is associated with gemcitabine resistance. This mechanism is through the abrogation of the gemcitabine-mediated inhibitory effect on E2F-1 function, a transcriptional repressor of RRM2.ConclusionThe ability to alter gemcitabine resistance in a targeted manner by inducing metabolic stress holds great promise in the treatment of advanced pancreatic cancer

    Key actors leading knowledge brokerage for sustainable school improvement with PLCs:Who brokers what?

    Get PDF
    This study investigated knowledge brokerage key actors, in schools that realized sustainable school improvement through professional learning communities (PLCs). To gain insight into what knowledge key actors brokered and how they brokered knowledge, key actors at five secondary schools that worked sustainably with PLCs participated in an in-depth mixed-method study. The findings showed what types of knowledge were brokered and through what activities, what characteristics of key actors were important for knowledge brokerage, and how key actors fit different profiles. These insights can help schools improve their knowledge brokerage as they work towards sustainable school improvement

    MAT2A Mutations Predispose Individuals to Thoracic Aortic Aneurysms

    Get PDF
    Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease

    Molecular Modeling Study for Inhibition Mechanism of Human Chymase and Its Application in Inhibitor Design

    Get PDF
    Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymasecomplexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitorymechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes

    Student engagement and perceptions of blended-learning of a clinical module in a veterinary degree program.

    Get PDF
    Blended learning has received much interest in higher education as a way to increase learning efficiency and effectiveness. By combining face-to-face teaching with technology-enhanced learning through online resources, students can manage their own learning. Blended methods are of particular interest in professional degree programs such as veterinary medicine in which students need the flexibility to undertake intra- and extramural activities to develop the range of competencies required to achieve professional qualification. Yet how veterinary students engage with blended learning activities and whether they perceive the approach as beneficial is unclear. We evaluated blended learning through review of student feedback on a 4-week clinical module in a veterinary degree program. The module combined face-to-face sessions with online resources. Feedback was collected by means of a structured online questionnaire at the end of the module and log data collected as part of a routine teaching audit. The features of blended learning that support and detract from students’ learning experience were explored using quantitative and qualitative methods. Students perceived a benefit from aspects of face-to-face teaching and technology-enhanced learning resources. Face-to-face teaching was appreciated for practical activities, whereas online resources were considered effective for facilitating module organization and allowing flexible access to learning materials. The blended approach was particularly appreciated for clinical skills in which students valued a combination of visual resources and practical activities. Although we identified several limitations with online resources that need to be addressed when constructing blended courses, blended learning shows potential to enhance student-led learning in clinical courses
    • 

    corecore