
REPORT

MAT2A Mutations Predispose Individuals
to Thoracic Aortic Aneurysms

Dong-chuan Guo,1 Limin Gong,1 Ellen S. Regalado,1 Regie L. Santos-Cortez,2 Ren Zhao,1 Bo Cai,1

Sudha Veeraraghavan,3 Siddharth K. Prakash,1 Ralph J. Johnson,1 Ann Muilenburg,4 Marcia Willing,5

Guillaume Jondeau,6 Catherine Boileau,7 Hariyadarshi Pannu,1 Rocio Moran,8 Julie Debacker,9 GenTAC
Investigators, National Heart, Lung, and Blood Institute Go Exome Sequencing Project, Montalcino
Aortic Consortium, Michael J. Bamshad,10 Jay Shendure,10 Deborah A. Nickerson,10 Suzanne M. Leal,2

C.S. Raman,3 Eric C. Swindell,11 and Dianna M. Milewicz1,*

Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a

family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome link-

age analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic an-

eurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this

condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha

(MAT IIa). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated fam-

ilies with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predis-

pose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the

population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Ia

are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIa

enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected

wild-type humanMAT2AmRNA rescued defects of zebrafish cardiovascular development at significantly higher levels thanmRNA edited

to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair

MAT IIa function. The data presented here support the conclusion that rare genetic variants inMAT2A predispose individuals to thoracic

aortic disease.
Aneurysms or enlargements of the thoracic aorta above the

heart, which involve the aortic root or ascending thoracic

aortic or both, can progressively enlarge over time and pre-

dispose individuals to acute aortic dissection and rupture,

events that are associated with a high degree of mortality,

morbidity, andmedical expenditure. Prophylactic repair of

an ascending aortic aneurysm is recommended to prevent

a life-threatening aortic dissection or rupture. Family

studies indicate that up to 20% of individuals who have

thoracic aortic aneurysms and dissections (TAAD) but no

syndrome (e.g., Marfan syndrome [MIM 154700]) have a

family history of TAAD, termed familial TAAD

(FTAAD).1,2 Mutations in several genes, including FBN1 (fi-

brillin-1 [MIM 134797]), TGFBR1 (transforming growth

factor b receptor 1 [MIM 190181]), TGFBR2 (transforming

growth factor b receptor II [MIM 190182]), TGFB2 (trans-

forming growth factor b2 [MIM 190220]), SMAD3 (SMAD

family member 3 [MIM 603109]), MYH11 (smooth muscle

myosin heavy chain [MIM 160745]), ACTA2 (smooth mus-

cle a actin [MIM 102620]), MYLK (myosin light chain

kinase [MIM 600922]), and PRKG1 (cGMP-dependent
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protein kinase type I [MIM 176894]) have been identified

as causing FTAAD in approximately 25% of families.

These genes encode proteins involved in either smooth

muscle cell (SMC) contraction or the TGF-b signaling

pathway.3–10

FTAAD is primarily inherited in an autosomal-dominant

manner with decreased penetrance and variable expres-

sion. The expression of TAAD in families is also variable

in terms of TAAD-associated clinical features, such as pat-

ent ductus arteriosus (PDA [MIM 607411]), early-onset

coronary artery disease, or intracranial aneurysms.5,9,11 A

bicuspid aortic valve (BAV) is another cardiovascular

feature that can be inherited in families affected by

TAAD. Interestingly, BAV is a common congenital heart

defect, found in 1%–2% of the general population.12 It is

estimated that up to 20% of individuals with BAV will go

on to develop ascending thoracic aortic aneurysms. Thus,

a strong association between BAV and TAAD risk has

been observed.13,14 Although the risk for BAV might be

slightly increased in individuals with TGFBR2 and ACTA2

mutations,11,15 to date no genes have been identified as
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er-Enfants Malades, Université Paris, 75018 Paris, France; 8Genomic Medi-

l Genetics, Ghent University Hospital, 9000 Ghent, Belgium; 10Department

partment of Pediatrics, University of Texas Health Science Center, Houston,

y of Human Genetics. All rights reserved.

, 2015

mailto:dianna.m.milewicz@uth.tmc.edu
http://dx.doi.org/10.1016/j.ajhg.2014.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2014.11.015&domain=pdf


causing TAAD-associated BAV in multiple members of a

family.16

A large family, TAA059, with autosomal-dominant in-

heritance of TAAD with decreased penetrance underwent

sequencing of the genes in which mutations have been

identified as causing FTAAD and no mutations were iden-

tified in these genes (Figure 1A). Eight individuals in this

family have dilatation of the aortic root and ascending

aorta with or without BAV. To identify the gene responsible

for thoracic aortic disease in this family, we collected blood

or saliva samples from both affected and unaffected family

members after obtaining approval from the institutional

review board at the University of Texas Health Science

Center at Houston and informed consent from the partic-

ipants. We conducted genome-wide linkage analysis on

DNA from eight family members, and we used the Affyme-

trix 50K SNP array to map the mutant locus. Under the

assumption of age-dependent penetrance with reduced

penetrance in women, parametric multipoint LOD

score analyses obtained a score of approximately 2.0 at

2p21–p16.2, 2p12–q11.2, 3q28–q29, and 7p21.1–p15.2

(Figure 1B). To assess whether rare copy-number variants

(CNVs) contributed to TAAD in this family, we assayed

DNA from the proband of TAA059 (III:17) on an Illumina

Human 660W-Quad BeadChip and used PennCNV and

CNV Partition software to identify unique CNVs in the

proband’s genome by comparison with 6809 Illumina

genotyped subjects obtained from the Database of Geno-

types and Phenotypes (dbGAP) by previously described

methods.17 No unique CNVs were identified in the pro-

band either within the loci delineated by whole-genome

linkage analysis peaks or outside these peaks.

DNA from two affected family members (coefficient of

relationship ¼ 1/8) was used for whole-exome sequencing

(Figure 1A). Using previously described filtering strategies,

we identified 25 variants that were shared between the two

affected relatives, resulted in altered amino acid sequences,

and had minor-allele frequencies (MAFs) less than

0.05% in the NHLBI Exome Sequencing Project and 1000

Genomes Project.18 Two rare variants fell under a linkage

peak (both under a major peak, spanning 78.3 Mb to

113.6 Mb on chromosome 2) and disrupted the coding

sequence of MAT2A (methionine adenosyltransferase

II, alpha [MIM 601468]; RefSeq accession number

NM_005911.5) by introducing the mutation c.1031A>C

(p.Glu344Ala) and of PROM2 (prominin 2; RefSeq

NM_144707.2) by introducing the mutation c.1381A>G

(p.Ser461Gly) (Figure 1B). The PROM2 p.Ser461Gly alter-

ation is present with a MAF of 0.047 in the European

Americans in the NHLBI Exome Sequencing Project (ESP)

database, and Ser461 is not conserved (it is glycine

in the mouse and cat genomes). In contrast, MAT

IIa p.Glu344Ala is not in any exome databases, and

the variant disrupts a highly conserved amino acid

(Figure 1C). MAT2A, with 91% identity at the amino acid

level between humans and zebrafish, is highly conserved

through evolution, and 13 rare variants in the ESP database
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alter amino acids. One of these, a nonsense variant in the

last exon, is not predicted to lead to nonsense-mediated

decay (Figure 1D).Furthermore, MAT IIa p.Glu344Ala is

predicted to be damaging by six bioinformatics tools (Pol-

yPhen-2 [both HVAR and HDIV scores], PROVEAN, SIFT,

MutationTaster, MutationAssessor, likelihood-ratio test

[LRT], and Functional Analysis Through Hidden Markov

Models [FATHMM]) and has a C score of 24.19 Linkage

analysis of thoracic aortic disease with the MAT2A variant

(c.1031A>C) in TAA059 generated a two-point LOD score

of 2.31.

The proband, III:17, was diagnosed with aortic root and

ascending aortic dilatation and BAVat age 37 years and un-

derwent surgical repair of a 4.9 cm ascending aortic aneu-

rysm at age 43 years. Her first cousin, III:9, was diagnosed

with a 5.2 cm aortic root aneurysm with a normal aortic

valve at age 45 years and underwent a valve-sparing

aortic root replacement. There was no reported history of

aortic dissection, but an obligate carrier (II:5) died sud-

denly from unknown causes at age 32 years. A total of 18

individuals with theMAT2A rare variant underwent evalu-

ation for thoracic aortic disease and bicuspid aortic valve.

Eight (44%) of these individuals were diagnosed with dila-

tation of the ascending aorta and/or aortic root at amedian

age of 50 years (range 37–56 years), and four individuals

(24%) were diagnosed with bicuspid aortic valves. Ten in-

dividuals (56%), whose median age was 30 years (range

16–50 years) at last follow-up, did not have aortic disease.

None of the individuals with the MAT2A variant had

other cardiovascular disease. Four individuals were evalu-

ated by a geneticist, and no systemic features of Marfan

or Loeys-Dietz syndrome were observed. Aortic tissue

excised during aortic aneurysm repair of III:9 and III:17

showed mild medial degeneration in the aortic media,

characterized by focal areas of increased proteoglycan

deposition and fragmentation of elastic fibers, butminimal

loss of SMCs (Figure 2).

To confirm that MAT2A mutations predispose individ-

uals to FTAAD, we analyzed exome data from 78 FTAAD

probands and Sanger-sequencing data of all MAT2A exons

and flanking introns from an additional 447 FTAAD pro-

bands in whom no variants responsible for the disease

have been identified. DNA samples were obtained from

affected individuals and other family members after

informed consent and approval from all participating in-

stitutions, including the Cleveland Clinic Center for

Personalized Genetic Healthcare and the Centre de Refer-

ence pour les Syndromes de Marfan et Apparente’s

in France, were obtained. One MAT2A rare variant,

c.1067G>A (p.Arg356His), was identified in family

TAA450. MAT IIa p.Arg356His is predicted to be damaging

by six bioinformatics tools, and this variant is not reported

by the NHLBI ESP database in 13,006 chromosomes. How-

ever, the proband from TAA450 also has an ACTA2 (RefSeq

NM_001613.2) rare variant, c.143G>T (p.Gly48Val), pre-

dicted to be probably damaging by PolyPhen-2 and absent

in the ESP database; this variant has not been identified
ican Journal of Human Genetics 96, 170–177, January 8, 2015 171



Figure 1. Identification and Characterization of MAT2A Rare Variants in Families Affected by Thoracic Aortic Disease
(A) TAA059 family pedigree. The legend indicates the designations for disease and mutation status of family members. The age at diag-
nosis of aortic aneurysm (dx), age at death (d), or age at last aortic imaging are shown in years. Individuals with aortic dilatation
measuringR4.2 cm or Z scores ofR2 were marked as affected. A diagonal line across a symbol indicates that the individual is deceased,
an arrow indicates the proband, a single asterisk indicates an individual whose DNA was used for whole-genome linkage analysis, and a

(legend continued on next page)
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Figure 2. Aortic Pathology Associated
with Aneurysms in Individuals with
MAT2A Variants
Compared with the control aorta, aortas
from affected individuals showed medial
degeneration upon Movat staining, which
showed increased proteoglycan deposition
(blue), focal mild fragmentation of elastic
fibers (black), and a decreased number of
cells (red). Immunostaining for a-actin
confirmed the mild focal loss of SMCs.
as a cause of FTAAD, but disease-causing ACTA2 vari-

ants have been identified in the adjacent amino acid

(p.Met49Val).20,21 No additional samples were available

for testing the segregation of these variants with disease

in the family.

MAT2A encodes the enzyme MAT IIa, which catalyzes

the transfer of the adenosyl moiety from ATP to L-methi-

onine to synthesize S-adenosylmethionine (SAM). SAM

serves as the methyl-group donor for methylation reac-

tions involving DNA, RNA, and protein.22 After donating

its methyl group, SAM is converted to S-adenosylhomo-

cysteine (SAH), which is a competitive inhibitor of

methyltransferases and is rapidly hydrolyzed to homocys-

teine.23 In mammals, methionine adenyltranferases are

encoded by two genes, MAT1A (methionine adenosyl-

transferase I, alpha [MIM 610550]) and MAT2A.24

MAT1A expression is limited to the adult liver, whereas

MAT2A is expressed in all tissues and at a high level in

aortic SMCs.25 The activity of MAT IIa is regulated by a b

subunit (MAT IIb), which is encoded by a separate gene,

MAT2B (methionine adenosyltransferase II, beta [MIM

605527]).26 Exome data from 88 affected FTAAD probands

did not identify any rare variants in either MAT1A or

MAT2B. The amino acid sequences of human MAT Ia

and MAT IIa are 84% identical, and the structure of both

of these enzymes has been determined. MAT1A encodes

the catalytic subunit (a1) that organizes into dimers (in
red circle indicates the individuals whose DNA was used for exome sequencing. Individual
aortic-root measurements around the upper limit of normal for 6 years; the ascending aorta
(B) Profile of the parametric multipoint LOD score for segregation of TAAD with SNPs acros
(C) Amino acid alignment of MAT2A sequences containing the rare variants identified in th
(D) Schematic representation of MAT2A. The boxes represent exons 1–9, and the UTRs and t
MAT2A rare variants identified in this study are above the gene diagram, and the rare varian
Blue letters designate variants predicted to be possibly or probably damaging by PolyPhen-2 a
predicted to be benign.
(E) X-ray crystallographic structure of MAT IIa (PDB identifier 2P02) shows positions of Glu3
pink) relative to the SAM binding site. Analysis of hydrogen bonds and non-bonded contacts
vicinity was performed with PYMOL. Arg356 is located near the SAM pocket and is part of a
idues Glu128 (E128), Asp129 (D129), Ser325 (S325), and Asp354 (D354, all designated in bl
elements that we propose as part of a ‘‘cantilever system’’ are shown in green and blue and i
monomer is in cyan. Part of a second monomer is also seen (pale gray).
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MAT III) and tetramers (in MAT I).

Recessive mutations in MAT1A

cause hypermethioninemia, and

both p.Glu344Ala and p.Arg356His

have been reported as disease
causing.27,28 Arg356 is located close to the SAM binding

pocket in the protein and is part of a hydrogen-bonding

network involving residues Glu128, Asp129, Ser325, and

Asp354 and a water molecule (Figure 1E). Altering

Arg356 to His356 would be expected to destabilize the

SAM binding pocket and lead to a loss of enzymatic activ-

ity. This prediction is consistent with a ~90% loss of MAT

I/III activity in the p.Arg356Gln substitution and a ~97%

loss of activity in the p.Arg356Typ substitution.27,28

Although Glu344 is farther away from the SAM binding

site, loss of activity in the Glu344 substitution suggests

that its strategic position at the end of the helix in relation

to Arg356 is most likely required for electrostatic interac-

tion with either another molecule of MAT IIa or the inter-

action partner MAT IIb. Alternatively, an undesired elec-

trostatic interaction involving Arg356 might also lead to

alteration of the helix position and thereby adversely

affect the ‘‘cantilever’’ (green, Figure 1E) leading into the

SAM binding site and thus SAM binding.

The zebrafish genome encodes two MAT IIa paralogs:

Mat2aa (RefSeq NP_001277009) has 395 amino acids

with 91% identity (96% similarity) with human

MAT IIa (RefSeq NP_005902), and Mat2ab (RefSeq

NP_001014318) has 363 amino acids with 89% identity

(96% similarity) to MAT IIa but lacks the last 32 amino

acids of the C-terminal region of MAT IIa. Previous studies

have shown that expression of mat2aa in zebrafish is
IV:5, marked by symbol y, has had stable
is normal.
s the human genome in family TAA059.
is study.
he open reading frame are designated. The
ts identified in the ESP database are below.
nalysis, and black letters designate variants

44 (E344) and Arg356 (R356, designated in
of the respective residues and others in the
hydrogen-bonding network involving res-
ue) and a water molecule (Wat). Structural
nclude Glu344 and Arg356; the rest of the
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Figure 3. Phenotypic Spectrum after
mat2aa MO Injection and mRNA Rescue
Zebrafish were phenotyped with light mi-
croscopy 72 dpf aftermat2aaMO injection
in the zebrafish Tg(flk1:EGFP.) Representa-
tive images are shown.
(A) Normal phenotype of control-MO-
injected zebrafish showing minimal peri-
cardial effusion and no tail defects; a
moderately affected morphant with a large
pericardial effusion and small eyes; and a
severely affected morphant with a large
pericardial effusion, small eyes, and a curly
tail or severe tail curvature.
(B) At 3 dpf aftermat2aaMO injection, sig-
nificant defects in the development of the
aortic arches were observed.
(C) Zebrafish mat2aa MO injection re-
sulted in significant defects on embryonic
development. Co-injection of wild-type
(WT) MAT2A mRNA, in comparison
with the substitution mRNA, signifi-
cantly reduced defects of cardiovascular
development.
restricted to the pharyngeal arch, and embryonic heart

and transposon knockout of mat2aa expression results in

a pericardial edema phenotype at 3 days postfertilization

(dpf) and death at 8 dpf.29 To investigate whether the

p.Glu344Ala substitution disrupts MAT IIa function, we

used a morpholino (MO) oligomer to disrupt expression

of mat2aa in Tg(flk1:EGFP) zebrafish, which express

enhanced GFP in the entire vasculature under the control

of the flk1 promoter and thus enable the visualization of

vascular defects in live zebrafish embryos.30 Injection of

4 ng of the mat2aa MO and assessment of the morphant

zebrafish at 3 dpf showed the expected pericardial edema

phenotype, along with other embryonic-development de-

fects that were classified as moderate or severe (Figure 3A).

Zebrafish were classified as phenotypically normal if they

were indistinguishable from control-MO-injected fish or

had minimal pericardial effusion and no tail defects;

moderately affected if they had a large pericardial effusion

and mild tail defects; and severely affected if they had

widespread edema, malformed eyes, and either a very

short malformed tail or no tail at all. Zebrafish classified

with moderate or severe defects in development also had

disruption of the development of the aortic arches

(Figure 3B). To determine whether the human wild-type

and p.Gly344Ala and p.Arg356His mutant MAT2A

mRNA rescued these embryonic defects, we co-injected

mat2aa MO with either wild-type or mutant MAT2A

mRNA. Co-injection of either wild-type or mutant

MAT2A mRNA partially rescued the moderate and severe

defects of zebrafish embryonic development by mat2aa

MO (p < 0.0001). However, wild-type MAT2A mRNA
174 The American Journal of Human Genetics 96, 170–177, January 8, 2015
rescued the developmental defects

in the zebrafish at a significantly

higher frequency than did the

mutant MAT2A mRNAs encoding
either the p.Gly344Ala variant (p ¼ 0.03) or the

p.Arg356His variant (p ¼ 0.05; Figure 3C).

Thus, accumulating evidence indicates that MAT2A mu-

tations predispose individuals to thoracic aortic disease.

The MAT2A rare variant is located within one of the link-

age peaks identified by whole-genome linkage analysis in

TAA059 and is not present in exome databases. An addi-

tional MAT2A rare variant, which is not in the databases,

was identified in a FTAAD proband. Exome sequencing

databases indicate that variants in MAT2A are rare in

the population. Protein-structure analysis indicates that

p.Glu344Ala and p.Arg356His are loss-of-function alter-

ations that significantly reduce catalytic activity of MAT

IIa. The substitution of either p.Glu344Ala or p.Arg356Trp

in MAT I/III reduces the enzymatic activity and leads to

hypermethioninemia. Finally, human wild-type MAT2A

mRNA was significantly more efficient in rescuing

mat2aa-MO-knockout-induced defects of zebrafish cardio-

vascular development than MAT2A mRNA altered to ex-

press either p.Glu344Ala or p.Arg356Trp.

Therefore, MAT2A mutations are a rare cause of FTAAD,

and the rarity of these mutations could be because disease-

causing variants fall in or near the active site and disrupt

the activity of the enzyme. Alternatively, the decreased

penetrance of the thoracic aortic aneurysms and low risk

for acute aortic dissections in families affected by MAT2A

mutations might prevent clinical recognition of families

with variants in this gene. The penetrance of TAAD in

TAA059 is low in comparison to that in families affected

by Marfan syndrome with FBN1 mutations that demon-

strate nearly complete penetrance of aortic disease. The



youngest age of a family member diagnosed with a

thoracic aortic aneurysm in this family was 37 years old,

whereas FBN1 mutations typically lead to aortic dilatation

in childhood.31 Of the 15 individuals who have the

MAT2A variant and are over the age of 30 years, seven

have been diagnosed with TAAD. It is also possible that

the development of TAAD in individuals with MAT2A

loss-of-function variants might need an additional genetic

or environmental ‘‘hit’’ to develop thoracic aortic disease.

In TAA059, one arm of the family is affected by BAV, which

potentially could increase the risk of TAAD. Additionally,

the proband in TAA450 has a MAT2A rare variant but

also has an ACTA2 variant that has not been previously

identified in families with FTAAD.

Methionine adenosyltransferases (MATs) catalyze the

synthesis of SAM, an enzyme that plays a critical role in

cellular metabolism. Mutations in MAT1A primarily affect

the MAT I/III C-terminal domain and have been identified

in individuals with autosomal-dominant or -recessive hy-

permethioninemia; aortic disease has not been reported

in these individuals.32 These mutations lead to a signifi-

cant reduction or loss of MAT I/III activity, increased levels

of plasma methionine, and normal or reduced levels of

SAM.27,28 It is interesting that MAT I/III p.Glu344Ala and

p.Arg356Trp substitutions result in autosomal-recessive

inheritance of hypermethioninemia, whereas MAT IIa

p.Glu344Ala and p.Arg356His cause autosomal-dominant

inheritance of TAAD.27,28 One possible explanation is

that MAT IIa activity in the liver increases in individuals

with MAT1A mutations and that this compensation

cannot occur with loss of MAT IIa activity in aortic

SMCs. Supporting this hypothesis is the observation that

ectopic expression of Mat2a has been reported in the

Mat1a�/� mouse.33 Additionally, an individual with hyper-

methioninemia due to a homozygous MAT1A mutation

leading to a premature stop codon (p.Thr185*) and slightly

decreased SAM levels has been reported, and one proposed

explanation for this observation is that ectopic expression

of MAT2A in the liver might maintain SAM levels.34

The rare variants in MAT2A in FTAAD families are pre-

dicted to decrease MAT IIa function and reduce cellular

SAM levels, which could lead to aortic disease through a

number of potential pathways. The SAM/SAH ratio is

considered to be an indicator of cellular methylation po-

tential, and a decrease in the SAM/SAH ratio is predicted

to reduce methylation capacity.35 In SMCs, global hypo-

methylation has been shown to occur with phenotypic

modulation and proliferation (reviewed by Liu et al.36).

More recently, ten-eleven translocation-2 (TET2), which

oxidizes 5-methylcytosine to generate 5-hydroxymethyl-

cytosine, and subsequently unmethylated cytosine, has

been identified as an epigenetic regulator of SMC differen-

tiation.37 Thus, disrupting the methylation potential of

SMCs has the potential to alter the phenotype of these

cells. Alternatively, decreased cellular SAM activity has

the potential to decrease glutathione (GSH) activity and in-

crease oxidative stress in the aortic SMCs. This mechanism
The Amer
is supported by the observation that the Mat1a�/� mouse

has a marked decrease in hepatic GSH and an increase in

serum lipid peroxides, indicating that Mat1a deficiency

triggers hepatic oxidative stress. MAT2A loss-of-function

mutations have the potential to similarly decrease GSH

and increase oxidative stress in aortic SMCs. Increased

oxidative stress has been previously shown to increase

the sensitivity of SMCs to angiotensin II (Ang II).38 Because

Ang II infusion leads to aortic aneurysms and dissections

in mice,39 increased and chronic oxidative stress might

also lead to aortic disease via increased signaling through

the Ang II pathway. A third possibility is that loss of MAT

IIa activity limits intracellular cysteine pools. Fibrillin-1,

the protein that is altered in individuals with Marfan syn-

drome, is a cysteine-rich extracellular matrix protein.

When SMCs are cultured under conditions of cysteine defi-

ciency, fibrillin-1 deposition into the matrix is greatly

diminished. Therefore, the pathology leading to aortic dis-

ease with loss of MAT IIa activity might overlap with that

of FBN1 mutations leading to Marfan syndrome. Finally,

pharmacologic inhibition of MAT IIa induces apoptosis

in T leukemic cells, and apoptosis of aortic SMCs has

been observed in thoracic aortic aneurysms and might

contribute to disease progression.40

In summary, this study provides evidence that MAT2A

loss-of-function variants predispose individuals to FTAAD.

The identification of additional families affected by

MAT2A disease-causing variants is needed before these re-

sults can be translated to clinical testing to identify indi-

viduals at risk for thoracic aortic disease. Further studies

are also needed to address whetherMAT2A variants require

a second ‘‘hit’’ to cause thoracic aortic disease and to iden-

tify the pathway by which decreased enzymatic activity of

MAT IIa leads to thoracic aortic aneurysms.
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dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/

Ensembl Genome Browser, http://www.ensembl.org/index.html

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org

PolyPhen-2, http://www.genetics.bwh.harvard.edu/pph2/

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq

UCSC Genome Browser, http://genome.ucsc.edu
References

1. Biddinger, A., Rocklin, M., Coselli, J., and Milewicz, D.M.

(1997). Familial thoracic aortic dilatations and dissections: a

case control study. J. Vasc. Surg. 25, 506–511.

2. Albornoz, G., Coady, M.A., Roberts, M., Davies, R.R., Tran-

quilli, M., Rizzo, J.A., and Elefteriades, J.A. (2006). Familial

thoracic aortic aneurysms and dissections—incidence, modes

of inheritance, and phenotypic patterns. Ann. Thorac. Surg.

82, 1400–1405.

3. Mizuguchi, T., Collod-Beroud, G., Akiyama, T., Abifadel, M.,

Harada, N., Morisaki, T., Allard, D., Varret, M., Claustres, M.,

Morisaki, H., et al. (2004). Heterozygous TGFBR2 mutations

in Marfan syndrome. Nat. Genet. 36, 855–860.

4. Pannu, H., Fadulu, V.T., Chang, J., Lafont, A., Hasham, S.N.,

Sparks, E., Giampietro, P.F., Zaleski, C., Estrera, A.L., Safi,

H.J., et al. (2005). Mutations in transforming growth factor-

beta receptor type II cause familial thoracic aortic aneurysms

and dissections. Circulation 112, 513–520.

5. Zhu, L., Vranckx, R., Khau Van Kien, P., Lalande, A., Boisset,

N., Mathieu, F., Wegman, M., Glancy, L., Gasc, J.M., Brunotte,

F., et al. (2006). Mutations in myosin heavy chain 11 cause a

syndrome associating thoracic aortic aneurysm/aortic dissec-

tion and patent ductus arteriosus. Nat. Genet. 38, 343–349.

6. Guo, D.C., Pannu, H., Tran-Fadulu, V., Papke, C.L., Yu, R.K.,

Avidan, N., Bourgeois, S., Estrera, A.L., Safi, H.J., Sparks, E.,

et al. (2007). Mutations in smooth muscle alpha-actin

(ACTA2) lead to thoracic aortic aneurysms and dissections.

Nat. Genet. 39, 1488–1493.

7. Wang, L., Guo, D.C., Cao, J., Gong, L., Kamm, K.E., Regalado,

E., Li, L., Shete, S., He,W.Q., Zhu,M.S., et al. (2010).Mutations

in myosin light chain kinase cause familial aortic dissections.

Am. J. Hum. Genet. 87, 701–707.

8. Regalado, E.S., Guo, D.C., Villamizar, C., Avidan, N., Gilchrist,

D., McGillivray, B., Clarke, L., Bernier, F., Santos-Cortez, R.L.,

Leal, S.M., et al.; NHLBI GO Exome Sequencing Project (2011).

Exome sequencing identifies SMAD3mutations as a cause of fa-

milial thoracic aortic aneurysmand dissectionwith intracranial

and other arterial aneurysms. Circ. Res. 109, 680–686.

9. Boileau, C., Guo, D.C., Hanna, N., Regalado, E.S., Detaint, D.,

Gong, L., Varret, M., Prakash, S.K., Li, A.H., d’Indy, H., et al.;

National Heart, Lung, and Blood Institute (NHLBI) Go Exome

Sequencing Project (2012). TGFB2 mutations cause familial

thoracic aortic aneurysms and dissections associated with

mild systemic features of Marfan syndrome. Nat. Genet. 44,

916–921.

10. Guo, D.C., Regalado, E., Casteel, D.E., Santos-Cortez, R.L.,

Gong, L., Kim, J.J., Dyack, S., Horne, S.G., Chang, G., Jondeau,
176 The American Journal of Human Genetics 96, 170–177, January 8
G., et al.; GenTAC Registry Consortium; National Heart, Lung,

and Blood Institute Grand Opportunity Exome Sequencing

Project (2013). Recurrent gain-of-function mutation in

PRKG1 causes thoracic aortic aneurysms and acute aortic dis-

sections. Am. J. Hum. Genet. 93, 398–404.

11. Guo, D.C., Papke, C.L., Tran-Fadulu, V., Regalado, E.S., Avi-

dan, N., Johnson, R.J., Kim, D.H., Pannu, H., Willing, M.C.,

Sparks, E., et al. (2009). Mutations in smooth muscle alpha-

actin (ACTA2) cause coronary artery disease, stroke, and

Moyamoya disease, along with thoracic aortic disease. Am. J.

Hum. Genet. 84, 617–627.
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