229 research outputs found

    Individual differences in social reward and threat expectancies linked to grey matter volumes in key regions of the social brain

    Get PDF
    Prospection (mentally simulating future events) generates emotionally charged mental images that guide social decision-making. Positive and negative social expectancies - imagining new social interactions to be rewarding vs. threatening - are core components of social approach and avoidance motivation, respectively. Stable individual differences in such positive and negative future-related cognitions may be underpinned by distinct neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-relevant social scenario that was ambiguous with regards to possible social acceptance or rejection. During this task we measured their expectancies for social reward (e.g. anticipated feelings of social connection) or threat (e.g. anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based morphometry (VBM) was used to explore the relation between their social reward and threat expectancies and regional grey matter volumes (rGMV). Increased rGMV in key regions involved in prospection, subjective valuation and emotion regulation (including ventromedial prefrontal cortex), correlated with both higher social reward and lower social threat expectancies. In contrast, social threat expectancies were uniquely linked with rGMV of regions involved in social attention (posterior superior temporal sulcus) and interoception (somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-affective processes critical to adaptive social functioning

    Structural connections support emotional connections: uncinate fasciculus microstructure is related to the ability to decode facial emotion expressions

    Get PDF
    The Uncinate Fasciculus (UF) is an association fibre tract connecting regions in the frontal and anterior temporal lobes. UF disruption is seen in several disorders associated with impaired social behaviour, but its functional role is unclear. Here we set out to test the hypothesis that the UF is important for facial expression processing, an ability fundamental to adaptive social behaviour. In two separate experiments in healthy adults, we used high-angular resolution diffusion-weighted imaging (HARDI) and constrained spherical deconvolution (CSD) tractography to virtually dissect the UF, plus a control tract (the corticospinal tract (CST)), and quantify, via tissue fractional anisotropy (FAT), individual differences in tract microstructure. In Experiment 1, participants completed the Reading the Mind in the Eyes Task (RMET), a well-validated assay of facial expression decoding. In Experiment 2, a different set of participants completed the RMET, plus an odd-emotion-out task of facial emotion discrimination. In both experiments, participants also completed a control odd-identity-out facial identity discrimination task. In Experiment 1, FAT of the right-, but not the left-hemisphere, UF was significantly correlated with performance on the RMET task, specifically for emotional, but not neutral expressions. UF FAT was not significantly correlated with facial identity discrimination performance. In Experiment 2, FA of the right-, but not left-hemisphere, UF was again significantly correlated with performance on emotional items from the RMET, together with performance on the facial emotion discrimination task. Again, no significant association was found between UF FAT and facial identity discrimination performance. Our findings highlight the contribution of right-hemisphere UF microstructure to inter-individual variability in the ability to decode facial emotion expressions, and may explain why disruption of this pathway affects social behaviour

    Impact of brain parcellation on prediction performance in models of cognition and demographics

    Get PDF
    Brain connectivity analysis begins with the selection of a parcellation scheme that will define brain regions as nodes of a network whose connections will be studied. Brain connectivity has already been used in predictive modelling of cognition, but it remains unclear if the resolution of the parcellation used can systematically impact the predictive model performance. In this work, structural, functional and combined connectivity were each defined with five different parcellation schemes. The resolution and modality of the parcellation schemes were varied. Each connectivity defined with each parcellation was used to predict individual differences in age, education, sex, executive function, self-regulation, language, encoding and sequence processing. It was found that low-resolution functional parcellation consistently performed above chance at producing generalisable models of both demographics and cognition. However, no single parcellation scheme showed a superior predictive performance across all cognitive domains and demographics. In addition, although parcellation schemes impacted the graph theory measures of each connectivity type (structural, functional and combined), these differences did not account for the out-of-sample predictive performance of the models. Taken together, these findings demonstrate that while high-resolution parcellations may be beneficial for modelling specific individual differences, partial voluming of signals produced by the higher resolution of the parcellation likely disrupts model generalisability

    Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: A voxel-based analysis study.

    Get PDF
    In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS)

    Mechanisms of network changes in cognitive impairment in multiple sclerosis

    Get PDF
    Background and objectives: Cognitive impairment in multiple sclerosis (MS) is associated with functional connectivity abnormalities. While there have been calls to use functional connectivity measures as biomarkers, there remains to be a full understanding of why they are affected in MS. In this cross-sectional study, we tested the hypothesis that functional network regions may be susceptible to disease-related "wear and tear" and that this can be observable on co-occurring abnormalities on other magnetic resonance metrics. We tested whether functional connectivity abnormalities in cognitively impaired patients with MS co-occur with (1) overlapping, (2) local, or (3) distal changes in anatomic connectivity and cerebral blood flow abnormalities. Methods: Multimodal 3T MRI and assessment with the Brief Repeatable Battery of Neuropsychological tests were performed in 102 patients with relapsing-remitting MS and 27 healthy controls. Patients with MS were classified as cognitively impaired if they scored ≄1.5 SDs below the control mean on ≄2 tests (n = 55) or as cognitively preserved (n = 47). Functional connectivity was assessed with Independent Component Analysis and dual regression of resting-state fMRI images. Cerebral blood flow maps were estimated, and anatomic connectivity was assessed with anatomic connectivity mapping and fractional anisotropy of diffusion-weighted MRI. Changes in cerebral blood flow and anatomic connectivity were assessed within resting-state networks that showed functional connectivity abnormalities in cognitively impaired patients with MS. Results: Functional connectivity was significantly decreased in the anterior and posterior default mode networks and significantly increased in the right and left frontoparietal networks in cognitively impaired relative to cognitively preserved patients with MS (threshold-free cluster enhancement corrected at p ≀ 0.05, 2 sided). Networks showing functional abnormalities showed altered cerebral blood flow and anatomic connectivity locally and distally but not in overlapping locations. Discussion: We provide the first evidence that functional connectivity abnormalities are accompanied by local cerebral blood flow and structural connectivity abnormalities but also demonstrate that these effects do not occur in exactly the same location. Our findings suggest a possibly shared pathologic mechanism for altered functional connectivity in brain networks in MS

    The effects of psychosocial stress on item, cued‐pair and emotional memory

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-10-01, rev-recd 2021-04-26, accepted 2021-05-14, pub-electronic 2021-06-14Article version: VoRPublication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268Abstract: Physical stress, such as from the cold‐pressor test, has been robustly associated with altered memory retrieval, but it is less clear whether the same happens following psychosocial stress. Studies using psychosocial stressors report mixed effects on memory, leading to uncertainty about the common cognitive impact of both forms of stress. The current study uses a series of four carefully designed experiments, each differing by only a single critical factor to determine the effects of psychosocial stress on specific aspects of episodic memory. In three experiments, we induced psychosocial stress after participants encoded words, then assessed retrieval of those words after a prolonged delay. These experiments found no effect of post‐encoding stress on recognition of neutral words or cued recall of word‐pairs, but a small effect on recollection of semantically related words. There were, however, positive relationships within the stress group between measures of stress (cortisol in experiment 1 and self‐reported‐anxiety in experiment 3) and recollection of single word stimuli. In the fourth experiment, we found that psychosocial stress immediately before retrieval did not influence word recognition. Recollection, particularly for semantically related stimuli, may therefore be more susceptible to the effects of psychosocial stress, and future studies can assess how this relates to other forms of stress. Overall, our findings suggest that the effects of psychosocial stress on episodic memory may be more subtle than expected, warranting further exploration in larger studies

    Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis

    Get PDF
    In multiple sclerosis, grey matter pathology occurs mostly next to or near the outer surface of the brain. Using quantitative MRI, Liu et al. reveal that white matter abnormalities are also greatest near the surface of the brain, suggesting common elements in the genesis of grey and white matter patholog

    Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas

    Get PDF
    Altmetric: 2More detail Article | OPEN Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas Fulvia Palesi, Andrea De Rinaldis, Gloria Castellazzi, Fernando Calamante, Nils Muhlert, Declan Chard, J. Donald Tournier, Giovanni Magenes, Egidio D’Angelo & Claudia A. M. Gandini Wheeler-Kingshott Scientific Reports 7, Article number: 12841 (2017) doi:10.1038/s41598-017-13079-8 Download Citation BrainNeuroscience Received: 11 May 2017 Accepted: 18 September 2017 Published online: 09 October 2017 Abstract Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated
    • 

    corecore