7 research outputs found

    Survey of Network Protocols

    Get PDF
    IPv4 is the network protocols of the present Internet, which is characterized by the Internet  Engineering Task Force (IETF). Network protocols characterize guidelines, polices and traditions for communication between system devices. Every advanced protocol for computer organization utilizer a packet switching system to send and get the message. The protocols are intended to conquer the activities of any enemy that can lose the sent message, discretionarily change the fields of the sent message, and replay old messages. In the web, the colossal measure of information and the immense number of various protocols makes it perfect as a high-bandwidth speed vehicle for undercover communication. This article is an overview of the current methods for making the covert channels. Weadditionally gave a diagram of wide kinds of network protocol

    Evaluation of Ischemic and Hemorrhagic Stroke on Computed Tomography

    Get PDF
    The stroke is the 3rd leading cause of death in Pakistan, wherein back in 2009, stroke used to be the 4th leading cause of death in Pakistan, a 19.2% increase is alarming (IHME, 2019). Ischemic stroke occurs 75-80 percent of the time, while hemorrhagic stroke occurs 8-20 percent of the time. The objective of our study is to evaluate the frequency and ratio of ischemic and hemorrhagic stroke on computed tomography. A Descriptive study was performed using non-probability convenient sampling technique. The study was conducted in Lahore General Hospital, Lahore, Pakistan. The data was collected from November 15, 2020 to February 15, 2021. Informed consent was taken from all the participants. In our study patients with provisional diagnose of clot or thrombosis, History of Ischemic Stroke, History of Hemorrhagic Stroke, patients who came with clinical manifestation of stroke, traumatic or Road Traffic Accidents (RTA) patients, patients with cerebral Transient Ischemic Stroke. Arterial Puncture in Last 7 days, patients with Active bleeding, peroneal nerve injuryand patients who have been injected Botulinum Toxic Injection in last 3 months were included in our study. Patients who had a previous history of Parkinson disease, patients not having any apparent cause or chronic or acute symptoms of stroke, no history of internal bleeding, patients with chronic cerebral disease and patients with other neurological defects were excluded.A total of 85 patients with Stroke were included in our study. Most of the patients were 40 to 65 years of age. The average age of the patients was 59.5 ± 11.1 years. Out of 85 there were 38.8% (P=33) positive with H/O Infarction females (P=11) and males (P=22 ) 55 (62.5%) were males and 33 (37.5%) were females with 1.62: 1 male to female ratio as shown in Fig 5.2. Ischemic stroke was observed in 33 (36.2%) patients and 40 (47.3%) were suffered hemorrhagic stroke and 12 (14.4%) patients were affected with TIA.The conclusion to this study is that to assess early stroke with extreme clarity, computed tomography is the safest modality for evaluating stroke patients and allows radiologists to more accurately assess these patients on CT in terms of prognosis, frequency, morbidity, and legitimacy. Keywords: Stroke, Hemorrhagic Stroke, Ischemic Stroke, Cerebral Infarction, Computed Tomography DOI: 10.7176/JHMN/90-06 Publication date:June 30th 202

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A Novel Approach to Reduce Breaches of Aircraft Communication Data

    No full text
    Aircraft are complex systems that rely heavily on monitoring and real-time communications with the base station. During aviation and flight operations, diverse data are gathered from different sources, including the Cockpit Voice Recorder (CVR), Flight Data Recorder (FDR), logbook, passenger data, passenger manifest etc. Given the high sensitivity of flight data, it is an attractive target for adversaries which could result in operational, financial and safety related incidents. Communications between aircraft pilots and air traffic controllers are all unencrypted. The data, mainly audio communication files, are placed openly within data centers on the ground stations which could lead to a serious compromise in security and privacy. One may rely on the cloud owing to its on-demand features but to thwart possible attacks, the data need to be encrypted first, giving rise to the issue of conducting search over encrypted data. This research presents a novel approach for data security in aviation industry by introducing a semantic-based searchable encryption scheme over the cloud. The designed system has proven to be extraordinarily effective for semantic-based searchable encryption at the word and the text level. The rigorous security and complexity analysis shows that the proposed solution provides a high level of security and efficiency and can be effectively deployed in the aviation sector. The designed scheme is tested through a real-world aviation dataset collected to demonstrate the significance of this research. The proof of concept proves to be secure, privacy-preserving and lightweight while resisting distinguishability attacks

    De novo transcriptome assembly of Dalbergia sissoo Roxb. (Fabaceae) under Botryodiplodia theobromae-induced dieback disease

    No full text
    Abstract Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore