65 research outputs found
Problematic social media use: results from a large-scale nationally representative adolescent sample
Despite social media use being one of the most popular activities among adolescents, prevalence estimates among teenage samples of social media (problematic) use are lacking in the field. The present study surveyed a nationally representative Hungarian sample comprising 5,961 adolescents as part of the European School Survey Project on Alcohol and Other Drugs (ESPAD). Using the Bergen Social Media Addiction Scale (BSMAS) and based on latent profile analysis, 4.5% of the adolescents belonged to the at-risk group, and reported low self-esteem, high level of depression symptoms, and elevated social media use. Results also demonstrated that BSMAS has appropriate psychometric properties. It is concluded that adolescents at-risk of problematic social media use should be targeted by school-based prevention and intervention programs
Embryogenesis in Sedum acre L.: structural and immunocytochemical aspects of suspensor development
The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed
Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress
Alanine aminotransferase (AlaAT) catalyses the reversible conversion of pyruvate and glutamate into alanine and oxoglutarate. In soybean, two subclasses were identified, each represented by two highly similar members. To investigate the role of AlaAT during hypoxic stress in soybean, changes in transcript level of both subclasses were analysed together with the enzyme activity and alanine content of the tissue. Moreover, the dependency of AlaAT activity and gene expression was investigated in relation to the source of nitrogen supplied to the plants. Using semi-quantitative PCR, GmAlaAT genes were determined to be highest expressed in roots and nodules. Under normal growth conditions, enzyme activity of AlaAT was detected in all organs tested, with lowest activity in the roots. Upon waterlogging-induced hypoxia, AlaAT activity increased strongly. Concomitantly, alanine accumulated. During re-oxygenation, AlaAT activity remained high, but the transcript level and the alanine content decreased. Our results show a role for AlaAT in the catabolism of alanine during the initial period of re-oxygenation following hypoxia. GmAlaAT also responded to nitrogen availability in the solution during waterlogging. Ammonium as nitrogen source induced both gene expression and enzyme activity of AlaAT more than when nitrate was supplied in the nutrient solution. The work presented here indicates that AlaAT might not only be important during hypoxia, but also during the recovery phase after waterlogging, when oxygen is available to the tissue again
High-speed, low-noise thermoelectric graphene detectors at terahertz frequencies
We report room temperature terahertz detection in hBN/graphene/hBN heterostructures, integrated in top-gated field effect transistors. The record combination of high-speed (response time < 1 ns) and high sensitivity (noise equivalent power 100 pWHz-1I2) is enabled by the photo-thermoelectric effect and paves the way for the design of ultrafast graphene arrays in the far infrared, opening concrete perspectives for targeting ultrafast applications
Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I
Fab I, enoyl acyl carrier protein reductase (ENR), is an enzyme used in fatty acid synthesis. It is a single chain polypeptide in plants, bacteria, and mycobacteria, but is part of a complex polypeptide in animals and fungi. Certain other enzymes in fatty acid synthesis in apicomplexan parasites appear to have multiple forms, homologous to either a plastid, plant-like single chain enzyme or more like the animal complex polypeptide chain. We identified a plant-like Fab I in Plasmodium falciparum and modelled the structure on the Brassica napus and Escherichia coli structures, alone and complexed to triclosan (5-chloro-2-[2,4 dichlorophenoxy] phenol]), which confirmed all the requisite features of an ENR and its interactions with triclosan. Like the remarkable effect of triclosan on a wide variety of bacteria, this compound markedly inhibits growth and survival of the apicomplexan parasites P. falciparum and Toxoplasma gondii at low (i.e. IC50 congruent with150-2000 and 62 ng/ml, respectively) concentrations. Discovery and characterisation of an apicomplexan Fab I and discovery of triclosan as lead compound provide means to rationally design novel inhibitory compounds
Broadband, electrically tunable third-harmonic generation in graphene
Optical harmonic generation occurs when high intensity light (>10^10 W m–2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing
Periodic boundary conditions for the simulation of 3D domain patterns in tetragonal ferroelectric material
Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase
Health professionals’ perspectives on breast cancer risk stratification: understanding evaluation of risk versus screening for disease
- …
