7 research outputs found

    Sugar Beet Cultivation in the Tropics and Subtropics: Challenges and Opportunities

    Get PDF
    Sugar beet, an important sugar crop, is particularly cultivated in humid regions to produce beet sugar, fulfilling about 25% of the world’s sugar requirement, supplementing cane sugar. However, sugar beet is not well adopted in the farming system of the tropics and subtropics, which is largely due to the historically well-established production technology of sugarcane and the lower awareness among local growers of sugar beet cultivation. Thus, the poor understanding of pest and disease management and the lack of processing units for sugar beet partially hinder farmers in the large-scale adaptation of sugar beet in the tropics and subtropics. Recent climatic developments have drawn attention to sugar beet cultivation in those regions, considering the low water demand and about half the growing duration (5–6 months) in contrast to sugarcane, sparing agricultural land for an extra crop. Nevertheless, a considerable knowledge gap exists for sugar beet when closely compared to sugarcane in tropical and subtropical growth conditions. Here, we examined the leverage of existing published articles regarding the significance and potential of sugar beet production in the tropics and subtropics, covering its pros and cons in comparison to sugarcane. The challenges for sugar beet production have also been identified, and possible mitigation strategies are suggested. Our assessment reveals that sugar beet can be a promising sugar crop in tropical and subtropical regions, considering the lower water requirements and higher salt resistance

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Brain Tumor/Mass Classification Framework Using Magnetic-Resonance-Imaging-Based Isolated and Developed Transfer Deep-Learning Model

    No full text
    With the advancement in technology, machine learning can be applied to diagnose the mass/tumor in the brain using magnetic resonance imaging (MRI). This work proposes a novel developed transfer deep-learning model for the early diagnosis of brain tumors into their subclasses, such as pituitary, meningioma, and glioma. First, various layers of isolated convolutional-neural-network (CNN) models are built from scratch to check their performances for brain MRI images. Then, the 22-layer, binary-classification (tumor or no tumor) isolated-CNN model is re-utilized to re-adjust the neurons’ weights for classifying brain MRI images into tumor subclasses using the transfer-learning concept. As a result, the developed transfer-learned model has a high accuracy of 95.75% for the MRI images of the same MRI machine. Furthermore, the developed transfer-learned model has also been tested using the brain MRI images of another machine to validate its adaptability, general capability, and reliability for real-time application in the future. The results showed that the proposed model has a high accuracy of 96.89% for an unseen brain MRI dataset. Thus, the proposed deep-learning framework can help doctors and radiologists diagnose brain tumors early
    corecore