619 research outputs found

    Taiwan Oscillation Network

    Get PDF
    The Taiwan Oscillation Network (TON) is a ground-based network to measure solar intensity oscillations to study the internal structure of the Sun. K-line full-disk images of 1000 pixels diameter are taken at a rate of one image per minute. Such data would provide information onp-modes withl as high as 1000. The TON will consist of six identical telescope systems at proper longitudes around the world. Three telescope systems have been installed at Teide Observatory (Tenerife), Huairou Solar Observing Station (near Beijing), and Big Bear Solar Observatory (California). The telescopes at these three sites have been taking data simultaneously since October of 1994. Anl – v diagram derived from 512 images is included to show the quality of the data

    Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: pattern of expression and correlation with clinical outcome

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a tumor derived from epithelial cells and Epstein-Barr virus infection has been reported to be a cause of this disease. Chemokine receptor CXCR4 was found to be involved in HIV infection and was highly expressed in human malignant breast tumors and the ligand for CXCR4, CXCL12 (SDF-1), exhibited high expression in organs in which breast cancer metastases are often found. The metastatic pattern of NPC is quite similar to that of malignant breast tumors. In this study, we investigated the expression of CXCR4 in nasopharyngeal carcinoma (NPC) tissues by immunohistostaining. We found different staining patterns, which included localization in the nucleus, membrane, cytoplasm or a combination of them. The staining intensity was also variable among samples. The metastatic rates in patients with high compared to low or absent expression was 38.6% versus 19.8%, respectively (P = 0.004). High expression of CXCR4 was associated with poor overall survival (OS = 67.05% versus 82.08%, P = 0.0225). These results suggest that CXCR4 may be involved in the progression of NPC and that a high level of CXCR4 expression could be used as a prognostic factor

    Growth Hormone Therapy Benefits Pituitary Stalk Interruption Syndrome Patients with Short Stature: A Retrospective Study of 75 Han Chinese

    Get PDF
    Objective. We aim to investigate the long-term benefits of growth hormone (GH) therapy in short stature adolescents and adults with pituitary stalk interruption syndrome (PSIS), which would be beneficial for future clinical applications. Design and Methods. In this study, initial height, final height, total height gain, and GH treatment history were retrospectively investigated in 75 Chinese PSIS patients. We compared height gain between the GH treated cohort and untreated cohort and explored the impact of different GH therapy duration on height gain. Results. For GH treated patients, their final height (SDS) increased from -1.99±1.91 (−6.93~2.80) at bone age (BA) of 11.2 (5.0~17.0) years to -1.47±1.64 (−7.82~1.05) at BA of 16.6 (8.0~18.0) years (P=0.016). And GH treated patients had more height gain than the untreated patients (P<0.05). There was a significant difference between the different GH therapy duration groups (P=0.001): GH 0 versus GH 3, P=0.000; GH 1 versus GH 3, P=0.028; GH 2 versus GH 3, P=0.044. Conclusion. Adult Chinese PSIS patients with short stature benefited the most from at least 12 months of GH therapy. Although patient diagnosis age was lagged behind in the developing countries, GH treatment was still effective for them and resulted in a higher final height and more height gain

    Deep Learning Approach for Large-Scale, Real-Time Quantification of Green Fluorescent Protein-Labeled Biological Samples in Microreactors

    Full text link
    Absolute quantification of biological samples entails determining expression levels in precise numerical copies, offering enhanced accuracy and superior performance for rare templates. However, existing methodologies suffer from significant limitations: flow cytometers are both costly and intricate, while fluorescence imaging relying on software tools or manual counting is time-consuming and prone to inaccuracies. In this study, we have devised a comprehensive deep-learning-enabled pipeline that enables the automated segmentation and classification of GFP (green fluorescent protein)-labeled microreactors, facilitating real-time absolute quantification. Our findings demonstrate the efficacy of this technique in accurately predicting the sizes and occupancy status of microreactors using standard laboratory fluorescence microscopes, thereby providing precise measurements of template concentrations. Notably, our approach exhibits an analysis speed of quantifying over 2,000 microreactors (across 10 images) within remarkably 2.5 seconds, and a dynamic range spanning from 56.52 to 1569.43 copies per micron-liter. Furthermore, our Deep-dGFP algorithm showcases remarkable generalization capabilities, as it can be directly applied to various GFP-labeling scenarios, including droplet-based, microwell-based, and agarose-based biological applications. To the best of our knowledge, this represents the first successful implementation of an all-in-one image analysis algorithm in droplet digital PCR (polymerase chain reaction), microwell digital PCR, droplet single-cell sequencing, agarose digital PCR, and bacterial quantification, without necessitating any transfer learning steps, modifications, or retraining procedures. We firmly believe that our Deep-dGFP technique will be readily embraced by biomedical laboratories and holds potential for further development in related clinical applications.Comment: 23 pages, 6 figures, 1 tabl

    The Role of H. pylori

    Get PDF
    Helicobacter pylori (H. pylori, Hp) colonizes the stomachs of approximately 20%–80% of humans throughout the world. The Word Healthy Organization (WHO) classified H. pylori as a group 1 carcinogenic factor in 1994. Recently, an increasing number of studies has shown an association between H. pylori infection and various extragastric diseases. Functional dyspepsia (FD) is considered a biopsychosocial disorder with multifactorial pathogenesis, and studies have shown that infection with CagA-positive H. pylori strains could explain some of the symptoms of functional dyspepsia. Moreover, CagA-positive H. pylori strains have been shown to affect the secretion of several hormones, including 5-HT, ghrelin, dopamine, and gastrin, and altered levels of these hormones might be the cause of the psychological disorders of functional dyspepsia patients. This review describes the mutual effects of H. pylori and hormones in functional dyspepsia and provides new insight into the pathogenesis of functional dyspepsia

    Functional Analysis of MAX2 in Phototropins-Mediated Cotyledon Flattening in Arabidopsis

    Get PDF
    Phototropins (phot1 and phot2) are blue-light receptors that control cotyledon flattening and positioning under strong light; however, their functional redundancy restricts our understanding of the specific roles of phot2. To identify the factors responsible for phot2-dependent cotyledon flattening and growth, we screened for light-insensitive mutants among mutagenized phot1 mutants in Arabidopsis thaliana. The double mutant phot1lea1 (leaf expansion associated 1), which is defective in cotyledon flattening and positioning but not the phototropic response was selected. This mutant phenotype could be alleviated by constitutively expressing MORE AXILLARY GROWTH 2 (MAX2), indicating that LEA1 was allelic to MAX2. The max2 mutants (max2-2 and max2-3) are defective in cotyledon flattening, which is similar to that of the phot1 phot2 mutants. Moreover, the amounts of MAX2 transcripts are inhibited in leaves of phot1 mutant. However, the additional disruption of PHOT1 gene in max2-2 or max2-3 did not affect their phenotype, including MAX2-mediated inhibition of hypocotyl elongation. By contrast, phototropins-mediated hypocotyl phototropism was not regulated by MAX2. Together, these results suggest that cotyledon flattening was mediated by both phototropins and MAX2 signaling, but the relationship between two pathways need further study

    SCIENTIFIC STUDIES OF GLOBAL WARMING, CLIMATE CHANGE, GLACIER MELTING AND SALMON PROTECTION

    Get PDF
    Wong, Josephine O., Wang, Nai-Yi, Wang, Lawrence K. and Wang, Mu-Hao Sung (2019). Scientific studies of global warming, climate change, glacier melting and salmon protection. In: "Evolutionary Progress in Science, Technology, Engineering, Arts, and Mathematics (STEAM)", Wang, Lawrence K. and Tsao, Hung-ping (editors). Volume 1, Number 9, September 2019; 110 pages. Lenox Institute Press, Newtonville, NY, 12128-0405, USA. No. STEAM-VOL1-NUM9-SEP2019; ISBN 978-0-9890870-3-2. ------------ ABSTRACT: Scientific studies of global warming, climate change, glaciers melting and salmon protection conducted by international researchers are reviewed, presented and discussed. The topics covered in this book chapter include: technical terminologies, climate change, global warming, main contributors to greenhouse gases, global warming potential and its limitations, absorption of heat by carbon dioxide, rising temperature trend in the environment, land temperature rise, ocean temperature and its water level rise, glacier melting, glacier protection, tidewater glaciers, Glacier Bay National Park and Reserve, Mendenhall Glacier, Mendenhall Lake, salmon protection, salmon life cycle, fire frequency, carbon dioxide stabilization, actions for environmental protection, and Macaulay Salmon Hatchery, Alaska, USA
    corecore