55 research outputs found

    Infrared study of H 1743-322 in outburst: a radio-quiet and NIR-dim microquasar

    Get PDF
    International audienceContext. Microquasars are accreting Galactic sources that are commonly observed to launch relativistic jets. One of the most important issues regarding these sources is the energy budget of ejections relative to the accretion of matter.Aims. The X-ray binary, black hole candidate, and microquasar H 1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical and near-infrared (OIR) observations with the ESO/NTT telescope during three of these outbursts (2003, 2004, and 2008). The goals of these observations were to investigate the presence of a jet, and to disentangle the various contributions constituting the spectral energy distribution (SED): accretion, ejection, and stellar emission.Methods. Photometric and spectroscopic OIR observations allowed us to produce a high time-resolution lightcurve in Ks-band, to analyze emission lines present in the IR spectra, to construct a multiwavelength SED including radio, IR, and X-ray data, and to complete the OIR vs. X-ray correlation of black hole binaries with H 1743-322 data points.Results. We detect rapid flares of duration ~5 min in the high time-resolution IR lightcurve. We identify hydrogen and helium emission lines in the IR spectra, coming from the accretion disk. The IR SED exhibits the spectral index typically associated with the X-ray high, soft state in our observations taken during the 2003 and 2004 outbursts, while the index changes to one that is typical of the X-ray low, hard state during the 2008 outburst. During this last outburst, we detected a change of slope in the NIR spectrum between the J and Ks bands, where the JH part is characteristic of an optically thick disk emission, while the HKs part is typical of optically thin synchrotron emission. Furthermore, the comparison of our IR data with radio and X-ray data shows that H 1743-322 exhibits a faint jet both in radio and NIR domains. Finally, we suggest that the companion star is a late-type main sequence star located in the Galactic bulge.Conclusions. These OIR photometric and spectroscopic observations of the microquasar H 1743-322, which are the first of this source to be published in a broad multiwavelength context, allow us to unambiguously identify two spectra of different origins in the OIR domain, evolving from optically thick thermal emission to optically thin synchrotron emission toward longer wavelengths. Comparing these OIR observations with other black hole candidates suggests that H 1743-322 behaves like a radio-quiet and NIR-dim black hole in the low, hard state. This study will be useful when quantitatively comparing the overall contribution of the compact jet and accretion flow in the energy budget of microquasars

    Optical spectroscopy of the microquasar GRS 1758-258: a possible intermediate mass system?

    Full text link
    Context. GRS 1758-258 is one of two prototypical microquasars towards the Galactic Center direction discovered almost a quarter of a century ago. The system remains poorly studied in the optical domain due to its counterpart being a very faint and absorbed target in a crowded region of the sky. Aims. Our aim is to investigate GRS 1758-258 in order to shed light on the nature of the stellar binary components. In particular, the main physical parameters of the donor star, such as the mass or the spectral type, are not yet well constrained. Methods. GRS 1758-258 has remained so far elusive to optical spectroscopy owing to its observational difficulties. Here, we use this traditional tool of stellar astronomy at low spectral resolution with a 10 m class telescope and a long slit spectrograph. Results. An improved spectrum is obtained as compared to previous work. The quality of the data does not allow the detection of emission or absorption features but, nevertheless, we manage to partially achieve our aims comparing the de-reddened continuum with the spectral energy distribution expected from an irradiated disc model and different donor star templates. Conclusions. We tentatively propose that GRS 1758-258 does not host a giant star companion. Instead, a main sequence star with mid-A spectral type appears to better agree with our data. The main impacts of this finding are the possibility that we are dealing with an intermediate mass system and, in this case, the prediction of an orbital period significantly shorter than previously proposed.Comment: 5 pages, 6 figures, accepted for publication in A&

    Real-time evolution of a large-scale relativistic jet

    Get PDF
    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims. We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a 'short', few parsec length with relativistic velocities. Methods. The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results. Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.Comment: 5 pages, 3 figures, 2 tables. Accepted for publication in Astronomy and Astrophysics Letter

    Identification of the optical and near-infrared counterpart of GRS 1758-258

    Get PDF
    Context. Understood to be a microquasar in the Galactic center region, GRS 1758-258 has not yet been unambiguously identified to have an optical/near-infrared counterpart, mainly because of the high absorption and the historic lack of suitable astrometric stars, which led to the use of secondary astrometric solutions. Although it is considered with 1E 1740.7-2942 as the prototypical microquasar in the Galactic center region, the Galactic origin of both sources has not yet been confirmed. Aims. We attempt to improve previous astrometry to identify a candidate counterpart to GRS 1758-258. We present observations with the Gran Telescopio de Canarias (GTC), in which we try to detect any powerful emission lines that would infer an extragalactic origin of this source. Methods. We use modern star catalogues to reanalyze archival images of the GRS 1758-258 field in the optical and near-infrared wavelengths, and compute a new astrometric solution. We also reanalyzed archival radio data of GRS 1758-258 to determine a new and more accurate radio position. Results. Our improved astrometric solution for the GRS 1758-258 field represents a significant advancement on previous works and allows us to identify a single optical/near-infrared source, which we propose as the counterpart of GRS 1758-258. The GTC spectrum of this source is however of low signal-to-noise ratio and does not rule out a Galactic origin. Hence, new spectral observations are required to confirm or discard a Galactic nature.Comment: 4 pages, 3 figures, accepted by Astronomy and Astrophysic

    High-temporal resolution optical observations of the gamma-ray blazer PG1553+113

    Get PDF
    We present here the results of an observational photo-polarimetry campaign at optical wavelengths of the blazar PG1553+113, which was recently detected at very high energies (> 100GeV) by the H.E.S.S and MAGIC γ-ray experiments. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Simultaneous differential photometry (at the B and R bands) shows no significant variability in the total optical flux.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Polarization and photometric observations of the gamma-ray blazar PG1553+113

    Get PDF
    We present the results of an observational photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (>100 GeV) by the HESS and MAGIC γ-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in γ-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Variability in the orbital profiles of the X-ray emission of the gamma-ray binary LS I +61 303

    Full text link
    We report on the analysis of Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) monitoring observations of the γ\gamma-ray binary system LS I +61 303, covering 35 full cycles of its orbital motion. This constitutes the largest continuous X-ray monitoring dataset analyzed to date for this source. Such an extended analysis allows us to report: a) the discovery of variability in the orbital profiles of the X- ray emission, b) the existence of a few (recent) short flares on top of the overall behavior typical of the source, which, given the PCA field-of-view, may or may not be associated with LS I +61 303, and c) the determination of the orbital periodicity using soft X-ray data alone.Comment: The Astrophysical Journal Letters (2010), in pres

    Candidate counterparts to the soft gamma-ray flare in the direction of LS i +61 303

    Get PDF
    Context. A short duration burst reminiscent of a soft gamma-ray repeater/anomalous X-ray pulsar behaviour was detected in the direction of LS I +61 303 by the Swift satellite. While the association with this well known gamma-ray binary is likely, a different origin cannot be excluded. Aims. We explore the error box of this unexpected flaring event and establish the radio, near-infrared and X-ray sources in our search for any peculiar alternative counterpart. Methods. We carried out a combined analysis of archive Very Large Array radio data of LS I +61 303 sensitive to both compact and extended emission. We also reanalysed previous near infrared observations with the 3.5 m telescope of the Centro Astronómico Hispano Alemn and X-ray observations with the Chandra satellite. Results. Our deep radio maps of the LS I +61 303 environment represent a significant advancement on previous work and 16 compact radio sources in the LS I +61 303 vicinity are detected. For some detections, we also identify near infrared and X-ray counterparts. Extended emission features in the field are also detected and confirmed. The possible connection of some of these sources with the observed flaring event is considered. Based on these data, we are unable to claim a clear association between the Swift-BAT flare and any of the sources reported here. However, this study represents the most sophisticated attempt to determine possible alternative counterparts other than LS I +61 303.Facultad de Ciencias Astronómicas y Geofísica

    Counterpart candidates to the unidentified Fermi source 0FGL J1848.6-0138

    Get PDF
    Aims: We aim to contribute to the identification of the counterpart for one of the bright sources of gamma-rays in the catalogue obtained and released by the Fermi collaboration. Methods: Our work is based on a extensive identification of sources from different wavelength catalogues and databases. Results: As a first result, we report the finding of a few counterpart candidates inside the 95% confidence error box of the Fermi LAT unidentified gamma-ray source 0FGL J1848.6-0138. The globular cluster GLIMPSE-C01 is remarkably distinctive being among the most peculiar objects consistent with both the position uncertainty in the gamma-ray source and a conceivable physical scenario for gamma-ray production. The Fermi-observed spectrum is compared with theoretical predictions in the literature and the association is found to be plausible but not yet certain because of its low X-ray to gamma-ray luminosity ratio. Other competing counterparts are also discussed. In particular, we pay special attention to a possible Pulsar Wind Nebula inside the Fermi error box, whose nature is yet to be confirmed. Conclusions: Both a globular cluster and an infrared source resembling a Pulsar Wind Nebula were found to be in positional agreement with 0FGL J1848.6-0138. In addition, other interesting objects in the field are also reported. Future gamma-ray observations will reduce the position uncertainty and we hope eventually confirm one of the counterpart candidates reported here. If GLIMPSE-C01 is confirmed together with the possible Fermi detection of the well known globular cluster 47 Tuc, then this would provide strong support to theoretical predictions that globular clusters are possible gamma-ray sources.Facultad de Ciencias Astronómicas y Geofísica

    Candidate counterparts to the soft gamma-ray flare in the direction of LS i +61 303

    Get PDF
    Context. A short duration burst reminiscent of a soft gamma-ray repeater/anomalous X-ray pulsar behaviour was detected in the direction of LS I +61 303 by the Swift satellite. While the association with this well known gamma-ray binary is likely, a different origin cannot be excluded. Aims. We explore the error box of this unexpected flaring event and establish the radio, near-infrared and X-ray sources in our search for any peculiar alternative counterpart. Methods. We carried out a combined analysis of archive Very Large Array radio data of LS I +61 303 sensitive to both compact and extended emission. We also reanalysed previous near infrared observations with the 3.5 m telescope of the Centro Astronómico Hispano Alemn and X-ray observations with the Chandra satellite. Results. Our deep radio maps of the LS I +61 303 environment represent a significant advancement on previous work and 16 compact radio sources in the LS I +61 303 vicinity are detected. For some detections, we also identify near infrared and X-ray counterparts. Extended emission features in the field are also detected and confirmed. The possible connection of some of these sources with the observed flaring event is considered. Based on these data, we are unable to claim a clear association between the Swift-BAT flare and any of the sources reported here. However, this study represents the most sophisticated attempt to determine possible alternative counterparts other than LS I +61 303.Facultad de Ciencias Astronómicas y Geofísica
    corecore